Skip to main content

Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals

  • Chapter
Book cover Neurogenesis in the Adult Brain I

Abstract

The production of adult-born neuron is an ongoing process ­accounting ∼10,000 immature neurons migrating to the olfactory bulb every day. This high turnover rate necessitates profound control mechanisms converging onto neural progenitors and neuroblasts to achieve adequate adult-born neuron production. Here, we elaborate on a novel epigenetic control of adult neurogenesis via highly coordinated nonsynaptic cell–cell signaling. This communication engages the neurotransmitters GABA and glutamate whose extracellular concentrations depend on neuroblast number and high affinity uptake systems in neural stem cells. Neuroblasts release GABA providing a negative feedback control of stem cell proliferation and instructing them on the size of the neuroblast pool. Recent findings show an unexpected mosaic expression of glutamate receptors leading to calcium elevations in migrating neuroblasts and differential role on their development. Remarkably, stem cells act as lighthouses releasing glutamate onto neuroblast sailing by, thus providing migratory, survival, and proliferative cues. Finally, we propose that the timing of neurotransmitter release and their spatial diffusion will determine the convergent co-activation of neuroblasts and stem cells, and provide a steady-state level of neuron production. Upon external impact or injury this signaling may adjust to a new steady-state level, thus providing nonsynaptic scaling of neuroblast production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andang M, Hjerling-Leffler J, Moliner A, Lundgren TK, Castelo-Branco G, Nanou E, Pozas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charnay P, El Manira A, Ibanez CF, Ernfors P (2008) Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature 451:460–464.

    Article  PubMed  Google Scholar 

  • Bettler B, Mulle C (1995) Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34:123–139.

    Article  PubMed  CAS  Google Scholar 

  • Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24:7623–7631.

    Article  PubMed  CAS  Google Scholar 

  • Bordey A (2006) Adult neurogenesis: basic concepts of signaling. Cell Cycle 5:722–728.

    Article  PubMed  CAS  Google Scholar 

  • Bordey A (2007) Enigmatic GABAergic networks in adult neurogenic zones. Brain Res Brain Res Rev 53:124–134.

    Article  CAS  Google Scholar 

  • Chebib M, Johnston GA (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26:937–940.

    Article  PubMed  CAS  Google Scholar 

  • Coutinho V, Knopfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8:551–561.

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249.

    Article  PubMed  CAS  Google Scholar 

  • Di Giorgi-Gerevini V, Melchiorri D, Battaglia G, Ricci-Vitiani L, Ciceroni C, Busceti CL, Biagioni F, Iacovelli L, Canudas AM, Parati E, De Maria R, Nicoletti F (2005) Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells. Cell Death Differ 12:1124–1133.

    Article  PubMed  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061.

    PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA 96:11619–11624.

    Article  PubMed  CAS  Google Scholar 

  • Gascon E, Dayer AG, Sauvain MO, Potter G, Jenny B, De Roo M, Zgraggen E, Demaurex N, Muller D, Kiss JZ (2006) GABA regulates dendritic growth by stabilizing lamellipodia in newly generated interneurons of the olfactory bulb. J Neurosci 26:12956–12966.

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Pradhan DA, Ming GL, Song H (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 30:1–8.

    Article  PubMed  Google Scholar 

  • Lerma J, Paternain AV, Rodriguez-Moreno A, Lopez-Garcia JC (2001) Molecular physiology of kainate receptors. Physiol Rev 81:971–998.

    PubMed  CAS  Google Scholar 

  • Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187.

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410.

    Article  PubMed  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193.

    Article  PubMed  CAS  Google Scholar 

  • Mak DO, McBride S, Foskett JK (1998) Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci USA 95:15821–15825.

    Article  PubMed  CAS  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen L, Malgrange B, Breuskin I, Bettendorff L, Moonen G, Belachew S, Rigo JM (2003) Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 23:3278–3294.

    PubMed  CAS  Google Scholar 

  • Pathania M, Yan LD, Bordey A (2010) A symphony of signals conduct early and late stages of adult neurogenesis. Neuropharmacology 58:865–876.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro P, Mulle C (2006) Kainate receptors. Cell Tissue Res 326:457–482.

    Article  PubMed  CAS  Google Scholar 

  • Platel JC, Lacar B, Bordey A (2007) GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Histol 38:602–610.

    PubMed  Google Scholar 

  • Platel J, Heintz T, Young S, Gordon V, Bordey A (2008) Tonic activation of GLUK5 kainate receptors decreases neuroblast migration in a whole mount preparation of the subventricular zone. J Physiol (Lond) 586:3783–3793.

    Article  CAS  Google Scholar 

  • Platel JC, Dave KA, Gordon V, Lacar B, Rubio ME, Bordey A (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65:859–872.

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia VJ, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744.

    Article  PubMed  CAS  Google Scholar 

  • Schlett K (2006) Glutamate as a modulator of embryonic and adult neurogenesis. Curr Top Med Chem 6:949–960.

    Article  PubMed  CAS  Google Scholar 

  • Stewart RR, Hoge GJ, Zigova T, Luskin MB (2002) Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J Neurobiol 50:305–322.

    Article  PubMed  CAS  Google Scholar 

  • Wang DD, Krueger DD, Bordey A (2003a) Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ. J Neurophysiol 90:2291–2302.

    Article  PubMed  CAS  Google Scholar 

  • Wang DD, Krueger DD, Bordey A (2003b) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol (Lond) 550:785–800.

    Article  CAS  Google Scholar 

  • Young SZ, Platel JC, Nielsen JV, Jensen NA, Bordey A (2010) GABA(A) increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Front Cell Neurosci 4:8.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health (NS048256 and DC007681, A.B.) and Yale Brown-Coxe fellowship (J-C.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélique Bordey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Platel, JC., Bordey, A. (2011). Control of Adult-Born Neuron Production by Converging GABA and Glutamate Signals. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_17

Download citation

Publish with us

Policies and ethics