Skip to main content

Wiring New Neurons with Old Circuits

  • Chapter
Neurogenesis in the Adult Brain I
  • 1411 Accesses

Abstract

The brain derives much of its function from its ability to adapt to tasks on a wide range of time scales, from milliseconds to days, weeks, and months. This adaptability at multiple time scales is found across all brain areas, from cognitive areas all the way to the peripheral areas, in which sensory information is encoded so as to facilitate the subsequent extraction of relevant information. The adaptability of the brain is achieved through multiple morphological and physiological changes occurring at all levels: from molecules, to spines, and to dendrites and axons. It is clear today that brain plasticity also operates at the level of entire cells. In at least two areas of the adult brain, new neurons are constitutively generated throughout life and form an integral part of the networks. Because the capacity of the adult brain to rewire itself depends on external influences, ongoing neuronal production represents also a plastic mechanism by which brain performance can be optimized according to the prevailing environment. However, it remains unclear when and why brain performance has to be optimized.

This chapter focuses on the functional issues linked to neurogenesis in the olfactory system. After outlining the processes of adult neurogenesis in the olfactory system and discussing their regulation by various factors, I consider how existing circuits can continue to work in the face of constant arrivals and departures of cells and explore the possible functional role of adult-born neurons in the host microcircuit. Concentrating exclusively on mammalian systems, I demonstrate throughout this chapter that adult neurogenesis is a plastic mechanism by which brain performance can be optimized to cope with changing environment or internal state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ache BW and Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48:417–430.

    PubMed  CAS  Google Scholar 

  • Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473.

    PubMed  CAS  Google Scholar 

  • Alonso M, Viollet C, Gabellec MM et al. (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26:10508–10513.

    PubMed  CAS  Google Scholar 

  • Altman J and Das GD (1965) Post-natal origin of microneurones in the rat brain. Nature 207:953–956.

    CAS  Google Scholar 

  • Alvarez-Buylla A (1990) Mechanism of neurogenesis in adult avian brain. Experientia 46:948–955.

    CAS  Google Scholar 

  • Alvarez-Buylla A and Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM and Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293.

    PubMed  CAS  Google Scholar 

  • Ambrogini P, Orsini L, Mancini C et al. (2004) Learning may reduce neurogenesis in adult rat dentate gyrus. Neurosci Lett 359:13–16.

    PubMed  CAS  Google Scholar 

  • Aungst JL, Heyward PM, Puche AC et al. (2003) Centre-surround inhibition among olfactory bulb glomeruli. Nature 426:623–629.

    CAS  Google Scholar 

  • Baker H, Kawano T, Margolis FL et al. (1983) Transneuronal regulation of tyrosine hydroxylase expression in olfactory bulb of mouse and rat. J Neurosci 3:69–78.

    PubMed  CAS  Google Scholar 

  • Belluzzi O, Benedusi M, Ackman J et al. (2003) Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 23:10411–10418.

    PubMed  CAS  Google Scholar 

  • Beltz BS and Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod brain. Arthropod Struct Dev 32:39–60.

    PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187.

    PubMed  CAS  Google Scholar 

  • Carlén M, Cassidy RM, Brismar H et al. (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608.

    PubMed  Google Scholar 

  • Carleton A, Petreanu LT, Lansford R et al. (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507–518.

    PubMed  CAS  Google Scholar 

  • Cecchi GA, Petreanu LT, Alvarez-Buylla A et al. (2001) Unsupervised learning and adaptation in a model of adult neurogenesis. J Comput Neurosci 11:175–182.

    PubMed  CAS  Google Scholar 

  • Chambers RA, Potenza MN, Hoffman RE et al. (2004) Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology 29:747–758.

    PubMed  Google Scholar 

  • Changeux JP and Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–712.

    CAS  Google Scholar 

  • Cleland TA and Linster C (2005) Computation in the olfactory system. Chem Senses 30:801–813.

    PubMed  Google Scholar 

  • Davenne M, Custody C, Charneau P and Lledo P-M (2005) In vivo imaging of migrating neurons in the mammalian forebrain. Chem Senses 30:115–116.

    Google Scholar 

  • Davidson BL and Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364.

    PubMed  CAS  Google Scholar 

  • Döbrössy MDE, Aurousseau C, Le Moal M et al. (2003) Differential effects of learning on neurogenesis: Learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry 8:974–982.

    PubMed  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550.

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA et al. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

    PubMed  CAS  Google Scholar 

  • Dupret D, Fabre A, Döbrössy MD et al. (2007) Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol 5:e214.

    PubMed  Google Scholar 

  • Ehninger D and Kempermann G (2006) Paradoxical effects of learning the Morris water maze on adult hippocampal neurogenesis in mice may be explained by a combination of stress and physical activity. Genes Brain Behav 5:29–39.

    PubMed  CAS  Google Scholar 

  • Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233.

    PubMed  CAS  Google Scholar 

  • Enwere E, Shingo T, Gregg C et al. (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365.

    PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317.

    PubMed  CAS  Google Scholar 

  • Falk N, Holmstrom M, Carlen R et al. (2002) Gene delivery to adult neural stem cells. Exp Cell Res 279:34–39.

    PubMed  CAS  Google Scholar 

  • Freeman WJ and Schneider W (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19:44–56.

    PubMed  CAS  Google Scholar 

  • Frielingsdorf H, Schwarz K, Brundin P et al. (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 101:10177–10182.

    PubMed  CAS  Google Scholar 

  • Garcia AD, Doan NB, Imura T et al. (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241.

    PubMed  CAS  Google Scholar 

  • Garcia-Verdugo JM, Doetsch F. Wichterle H et al. (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234–248.

    PubMed  CAS  Google Scholar 

  • Gheusi G, Cremer H, McLean H et al. (2000) Importance of newly generated neurons in the adult OB for odor discrimination. Proc Natl Acad Sci USA 97:1823–1828.

    PubMed  CAS  Google Scholar 

  • Goldman SA and Nottebohm F (1983) Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394.

    PubMed  CAS  Google Scholar 

  • Gould E, Reeves AJ, Graziano MS et al. (1999) Neurogenesis in the neocortex of the adult ­primates. Science 286:548–552.

    PubMed  CAS  Google Scholar 

  • Grubb MS, Nissant A, Murray K and Lledo PM (2008) Functional maturation of the first synapse in olfaction: development and adult neurogenesis. J Neurosci 28:2919–2932.

    PubMed  CAS  Google Scholar 

  • Hack MA, Saghatelyan A, de Chevigny et al. (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872.

    PubMed  CAS  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888.

    PubMed  CAS  Google Scholar 

  • Hildebrand JG and Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631.

    PubMed  CAS  Google Scholar 

  • Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J Comp Neurol 134: 305–322.

    PubMed  CAS  Google Scholar 

  • Jakobsson J, Ericson C, Jansson M et al. (2003) Targeted transgene expression in rat brain using lentiviral vectors. J Neurosci Res 73:876–885.

    PubMed  CAS  Google Scholar 

  • Kempermann G (2006) Adult neurogenesis. Oxford University Press, New York.

    Google Scholar 

  • Kohwi M, Osumi N, Rubenstein JL et al. (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003.

    PubMed  CAS  Google Scholar 

  • Kohwi M, Petryniak MA, Long JE et al. (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27:6878–6891.

    PubMed  CAS  Google Scholar 

  • Koketsu D, Mikami A, Miyamoto Y et al. (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci 23:937–942.

    PubMed  CAS  Google Scholar 

  • Kornack DR and Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773.

    PubMed  CAS  Google Scholar 

  • Kornack DR and Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130.

    PubMed  CAS  Google Scholar 

  • Kosaka T and Kosaka K (2005) Structural organization of the glomerulus in the main olfactory bulb. Chem Senses Suppl 1: i107–i108.

    Google Scholar 

  • Kosaka K et al. (1997) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. II. Prominent differences in the intraglomerular dendritic arborization and their relationship to olfactory nerve terminals. Neuroscience 76:775–786.

    PubMed  CAS  Google Scholar 

  • Kosaka K et al. (1998) How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci Res 30:101–110.

    PubMed  CAS  Google Scholar 

  • Laywell ED, Rakic P, Kukekov VG et al. (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97:13883–13888.

    PubMed  CAS  Google Scholar 

  • Lemasson M, Saghatelyan A, Olivo-Marin JC et al. (2005) Neonatal and adult neurogenesis provide two distinct populations of granule cells in the mouse OB. J Neurosci 25:6816–6825.

    PubMed  CAS  Google Scholar 

  • Lledo P-M and Gheusi G (2003) Olfactory processing in a changing brain. Neuroreport 14:1655–1663.

    PubMed  Google Scholar 

  • Lledo P-M and Lagier S (2006) Local interneurons transduce spatial coding into temporal patterning in the mammalian olfactory bulb. Semin Cell Dev Biol 17:443–453.

    PubMed  Google Scholar 

  • Lledo P-M and Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life/death decisions, and the effects of sensory experience. Trends Neurosci 28:248–254.

    PubMed  CAS  Google Scholar 

  • Lledo P-M, Gheusi G and Vincent JD (2005) Information processing in the mammalian olfactory system. Physiol Rev 85:281–317.

    PubMed  Google Scholar 

  • Lois C and Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148.

    PubMed  CAS  Google Scholar 

  • Lois C, Hong EJ, Pease S et al. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872.

    PubMed  CAS  Google Scholar 

  • Magavi SSP, Mitchell BD, Szentirmai O et al. (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 25:10729–10739.

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hack MA, Hartfuss E et al. (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764.

    PubMed  CAS  Google Scholar 

  • Malnic B, Hirono J, Sato T et al. (1999) Combinatorial receptor codes for odors. Cell 96:713–723.

    PubMed  CAS  Google Scholar 

  • Mandairon N, Jourdan F and Didier A (2003) Deprivation of sensory inputs to the olfactory bulb up-regulates cell death and proliferation in the subventricular zone of adult mice. Neuroscience 119:507–516.

    PubMed  CAS  Google Scholar 

  • Marshall CAG, Novitch BG and Goldman JE (2005) Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J Neurosci 25:7289–7298.

    PubMed  CAS  Google Scholar 

  • Mechawar N, Saghatelyan A, Grailhe R et al. (2004) Nicotinic receptors regulate the survival of newborn neurons in the adult OB. Proc Natl Acad Sci USA 101:9822–9826.

    PubMed  CAS  Google Scholar 

  • Merkle FT, Mirzadeh Z and Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384.

    PubMed  CAS  Google Scholar 

  • Miwa N and Storm DR (2005) Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the olfactory bulb promotes survival of newly formed granule cells. J Neurosci 25:5404–5412.

    PubMed  CAS  Google Scholar 

  • Mizrahi A and Katz LC (2003) Dendritic stability in the adult olfactory bulb. Nat Neurosci 6:1201–1207.

    PubMed  CAS  Google Scholar 

  • Mori K, Takahashi YK, Igarashi KM et al. (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86:409–433.

    PubMed  CAS  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG et al. (1994) Neural stem cells in the adults mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082.

    PubMed  CAS  Google Scholar 

  • Nissant A, Bardy C, Katagiri H et al. (2009) Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci 12:728–730.

    PubMed  CAS  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501.

    PubMed  CAS  Google Scholar 

  • Parrish-Aungst S, Shipley MT, Erdelyi et al. (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501:825–836.

    PubMed  CAS  Google Scholar 

  • Peretto P, Merighi A, Fasolo A et al. (1997) Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull 42:9–21.

    PubMed  CAS  Google Scholar 

  • Peretto P, Merighi A, Fasolo A et al. (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49:221–243.

    PubMed  CAS  Google Scholar 

  • Petreanu L and Alvarez-Buylla A (2002) Maturation and death of adult-born OB granule neurons: Role of olfaction. J Neurosci 22:6106–6113.

    PubMed  CAS  Google Scholar 

  • Philpot BD, Lim JH and Brunjes PC (1997) Activity-dependent regulation of calcium-binding proteins in the developing rat olfactory bulb. J Comp Neurol 387:12–26.

    PubMed  CAS  Google Scholar 

  • Pressler RT and Strowbridge BW (2006) Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49:889–904.

    PubMed  CAS  Google Scholar 

  • Rakic P (2002) Adult neurogenesis in mammals, an identity crisis. J Neurosci 22:614–618.

    PubMed  Google Scholar 

  • Rochefort C, Gheusi G, Vincent JD et al. (2002) Enriched odor exposure increases the number of newborn neurons in the adult OB and improves odor memory. J Neurosci 22:2679–2689.

    PubMed  CAS  Google Scholar 

  • Rogelius N, Ericson C and Lundberg C (2005) In vivo labeling of neuroblasts in the subventricular zone of rats. J Neurosci Methods 142:285–293.

    PubMed  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406.

    PubMed  CAS  Google Scholar 

  • Saghatelyan A, Roux P, Migliore M et al. (2005) Activity-dependent adjustments of the inhibitory network in the adult OB following early postnatal deprivation. Neuron 46:103–116.

    PubMed  CAS  Google Scholar 

  • Schmidt-Hieber C, Jonas P and Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187.

    CAS  Google Scholar 

  • Schoppa NE and Urban NN (2003) Dendritic processing within olfactory bulb circuits. Trends Neurosci 26:501–506.

    PubMed  CAS  Google Scholar 

  • Scotto-Lomassese S, Strambi C, Strambi A et al. (2003) Suppression of adult neurogenesis impairs olfactory learning and memory in an adult insect. J Neurosci 23:9289–9296.

    PubMed  CAS  Google Scholar 

  • Seri B, Garcia-Verdugo JM, McEwen BS and Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160.

    PubMed  CAS  Google Scholar 

  • Shepherd GM (2006) Smell images and the flavour system in the human brain. Nature 444:316–321.

    CAS  Google Scholar 

  • Shepherd GM, Chen WR and Greer CA (2004) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain (5th ed.), edited by Oxford University Press, New York, pp. 165–216.

    Google Scholar 

  • Shepherd GM, Chen WR, Willhite D et al. (2007) The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res Rev 55:373–382.

    PubMed  Google Scholar 

  • Shingo T, Gregg C, Enwere E et al. (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–120.

    PubMed  CAS  Google Scholar 

  • Shipley MT and Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30:123–176.

    PubMed  CAS  Google Scholar 

  • Stewart RR, Hoge GJ, Zigova T et al. (2002) Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J Neurobiol 50:305–322.

    PubMed  CAS  Google Scholar 

  • Stone DM, Grillo M, Margolis FL et al. (1991) Differential effect of functional olfactory bulb deafferentation on tyrosine hydroxylase and glutamic acid decarboxylase messenger RNA levels in rodent juxtaglomerular neurons. J Comp Neurol 311:223–233.

    PubMed  CAS  Google Scholar 

  • Tiscornia G, Singer O, Ikawa M et al. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848.

    PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270.

    PubMed  CAS  Google Scholar 

  • Wachowiak M and Shipley MT (2006) Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 17:411–423.

    PubMed  Google Scholar 

  • Washbourne P and McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–573.

    PubMed  CAS  Google Scholar 

  • Whitman MC and Greer CA (2007) Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27:9951–9961.

    PubMed  CAS  Google Scholar 

  • Willhite DC, Nguyen KT, Masurkar AV et al. (2006) Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci USA 103:12592–12597.

    PubMed  CAS  Google Scholar 

  • Wilson RI and Mainen ZF (2006) Early events in olfactory processing. Annu Rev Neurosci 29:163–201.

    PubMed  CAS  Google Scholar 

  • Winner B, Cooper-Kuhn CM, Aigner R et al. (2002) Long-term survival and cell death of newly generated neurons in the adult rat OB. Eur J Neurosci 16:1681–1689.

    PubMed  Google Scholar 

  • Yamaguchi M and Mori K (2005) Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse OB. Proc Natl Acad Sci USA 102: 9697–9702.

    PubMed  CAS  Google Scholar 

  • Young JM, Friedman C, Williams EM et al. (2002) Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 11:535–546.

    PubMed  CAS  Google Scholar 

  • Young KM, Fogarty M, Kessaris N et al. (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27:8286–8296.

    PubMed  CAS  Google Scholar 

  • Zou DJ, Feinstein P, Rivers AL et al. (2004) Postnatal refinement of peripheral olfactory projections. Science 304:1976–1979.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I apologize to those authors whose references, although relevant to this subject, have not been included in this review for reasons of space constraints. My laboratory is supported by the Fondation pour la Recherche Médicale (Équipe FRM), by the life insurance company “AG2R-La-Mondiale,” and by Ecole des Neurosciences de Paris (ENP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Marie Lledo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Lledo, PM. (2011). Wiring New Neurons with Old Circuits. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_16

Download citation

Publish with us

Policies and ethics