Skip to main content

Development and Survival of Adult-Born Olfactory Neurons

  • Chapter
Neurogenesis in the Adult Brain I
  • 1405 Accesses

Abstract

In rodents, the olfactory bulb is located at the rostral end of the brain, where it forms part of the telencephalon. The olfactory bulb first develops in the midembryonic period as an evagination from the rostral tip of the telencephalon (Hinds, 1968b). Mitral and tufted cells, the bulbar excitatory projection neurons, are produced during the mid- to late embryonic period (Hinds, 1968a; Bayer, 1983), whereas granule cells and periglomerular cells, the bulbar local interneurons, are generated extensively during the late embryonic and early neonatal periods, with production continuing in adulthood. This adult neurogenesis of bulbar interneurons may be responsible for the high plasticity that characterizes information processing in the olfactory bulb. Animals are required to adapt to environments with ­various odors in daily life. Bulbar interneurons generated in adulthood may increase the plasticity of olfaction such that animals can choose appropriate behavioral responses in circumstances with changing odors. Because not all new neurons are integrated into preexisting circuits, adult neurogenesis is in one sense wasteful; in the olfactory bulb also, only half of new interneurons are integrated into the ­bulbar circuitry while the other half are eliminated (Petreanu and Alvarez-Buylla, 2002; Winner et al., 2002). Adult neurogenesis therefore resembles embryonic development, in that neurons are initially prepared in excess, many of which are subsequently eliminated. This selection process during development is crucial to ensuring that the neuronal circuitry has been appropriately tuned to provide proper information processing (Buss et al., 2006). A similar selection process occurs in the olfactory bulb of adult mammals, where it allows the bulbar circuit to select the appropriate type and ­number of neurons from among excess pools of new neurons in accordance with the ­particular requirements of the odor situation in which the animal finds itself. The mechanism by which adult-born neurons are selected, in other words, their fate of survival or death, is therefore key to understanding how adult-born bulbar interneurons contribute to the functional plasticity of the bulbar circuitry. In this section, we first address how the survival or death of adult-born neurons is controlled. We then compare the development and survival of adult- and neonate-born neurons to investigate how the integrity of the bulbar circuit is maintained and remodeled by adult-born neurons. Although two major types of interneurons are found, periglomerular cells and granule cells, the major population of adult-born interneurons are granule cells. This chapter therefore focuses mainly on the properties of granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, M., Viollet, C., Gabellec, M.M., Meas-Yedid, V., Olivo-Marin, J.C. & Lledo, P.M. (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26, 10508–10513.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, A., Garcia-Verdugo, J. & Tramontin A.D. (2001) A unified hypothesis on the lineage of neural stem cells. Nature Reviews in Neuroscience, 2, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Batista-Brito, R., Close, J., Machold, R. & Fishell, G. (2008) The distinct temporal origins of olfactory bulb interneuron subtypes. Journal of Neuroscience, 28, 3966–3975.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, S.A. (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Experimental Brain Research, 50, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Biebl, M., Cooper, C.M., Winkler, J. & Kuhn, H.G. (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neuroscience Letters, 291, 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P., Kaba, H. & Keverne, E.B. (1990) Olfactory recognition: a simple memory system. Science, 250, 1123–1126.

    Article  Google Scholar 

  • Buss, R.R., Sun, W. & Oppenheim, R.W. (2006) Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 1–35.

    Article  PubMed  CAS  Google Scholar 

  • Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. & Lledo, P.M. (2003) Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience, 6, 507–518.

    PubMed  CAS  Google Scholar 

  • Cooper-Kuhn, C.M., Winkler, J. & Kuhn, H.G. (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. Journal of Neuroscience Research, 77, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Corotto, F., Henegar, J. & Maruniak, J. (1994) Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse. Neuroscience, 61, 739–744.

    Article  PubMed  CAS  Google Scholar 

  • De Marchis, S., Bovetti, S., Carletti, B., Hsieh, Y.C., Garzotto, D., Peretto, P., Fasolo, A., Puche, A.C. & Rossi, F. (2007) Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. Journal of Neuroscience, 27, 657–664.

    Article  PubMed  Google Scholar 

  • Doty, R.L. (1986) Odor-guided behavior in mammals. Experientia. 42, 257–271.

    Article  CAS  Google Scholar 

  • Enwere, E., Shingo, T., Gregg, C., Fujikawa, H., Ohta, S. & Weiss, S. (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. Journal of Neuroscience, 24, 8354–8365.

    Article  PubMed  CAS  Google Scholar 

  • Fiske, B. & Brunjes, P. (2001a) Cell death in the developing and sensory-deprived rat olfactory bulb. Journal of Comparative Neurology, 431, 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Fiske, B. & Brunjes, P. (2001b) NMDA receptor regulation of cell death in the rat olfactory bulb. Journal of Neurobiology, 47, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Hensch, T.K. (2005) Critical period plasticity in local cortical circuits. Nature Reviews in Neuroscience, 6, 877–888.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J.W. (1968a) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. Journal of Comparative Neurology, 134, 287–304.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J.W. (1968b) Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. Journal of Comparative Neurology, 134, 305–322.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, F., Nagao, H., Naritsuka, H., Murata, Y., Taniguchi, H. & Mori, K. (2006) A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. Journal of Comparative Neurology, 495, 754–768.

    Article  PubMed  CAS  Google Scholar 

  • Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., Mori, K., Ikeda, T., Itohara, S. & Kageyama, R. (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature Neuroscience, 11, 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, N., Okano, H. & Sawamoto, K. (2006) Role of cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes to Cells. 11, 1145–1159.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, M.S., McNelly, N.A. & Hinds, J.W. (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. Journal of Comparative Neurology, 239, 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Kasa, P., Hlavati, I., Dobo, E., Wolff, A., Joo, F. & Wolff, J.R. (1995) Synaptic and non-synaptic cholinergic innervation of the various types of neurons in the main olfactory bulb of adult rat: immunocytochemistry of choline acetyltransferase. Neuroscience, 67, 667–677.

    Article  PubMed  CAS  Google Scholar 

  • Kelsch, W., Mosley, C.P., Lin, C.W. & Lois, C. (2007) Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biology, 5, 2501–2512.

    CAS  Google Scholar 

  • Kelsch, W., Lin, C.W. & Lois, C. (2008) Sequential development of synapses in dendritic domains during adult neurogenesis. Proceedings of the National Academy of Sciences of the USA, 105, 16803–16808.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka, K., Aika, Y., Toida, K., Heizmann, C.W., Huinziker, W., Jacobowitz, D.M., Nagatsu, I., Streit, P., Visser, T.J. & Kosaka, T. (1995) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neuroscience Research, 23, 73–88.

    PubMed  CAS  Google Scholar 

  • Lagace, D.C., Whitman, M.C., Nooman, M.A., Ables, J.L., DeCarolis, N.A., Arguella, A.A., Donovan, M.H., Fischer, S.J., Farnbauch, L.A., Beech, R.D., DiLeone, R.J., Greer, C.A., Mandyam, C.D. & Eisch, A.J. (2007) Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. Journal of Neuroscience, 27, 12623–12629.

    Article  PubMed  CAS  Google Scholar 

  • Lemasson, M., Saghatelyan, A., Olivo-Marin, J.C. & Lledo, P.M. (2005) Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. Journal of Neuroscience, 25, 6816–6825.

    Article  PubMed  CAS  Google Scholar 

  • Lledo, P.M., Alonso, M. & Grubb, M.S. (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews in Neuroscience. 7, 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Lledo, P.M., Merkle, F.T. & Alvarez-Buylla, A. (2008) Origin and function of olfactory bulb interneuron diversity. Trends in Neuroscience, 31, 392–400.

    Article  PubMed  CAS  Google Scholar 

  • Mandairon, N., Jourdan, F. & Didier, A. (2003) Deprivation of sensory inputs to the olfactory bulb upregulates cell death and proliferation in the subventricular zone of adult mice. Neuroscience, 119, 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Mandairon, N., Sacquet, J., Garcia, S., Ravel, N., Jourdan, F. & Didier, A. (2006a) Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. European Journal of Neuroscience, 24, 3578–3588.

    Article  PubMed  Google Scholar 

  • Mandairon, N., Sacquet, J., Jourdan, F. & Didier, A. (2006b) Long-term fate and distribution of newborn cells in the adult mouse olfactory bulb: influences of olfactory deprivation. Neuroscience, 141, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J.H. & Shipley, M.T. (1991) Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat. Journal of Comparative Neurology, 304, 467–477.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J.H., Shipley, M.T., Nickell, W.T., Aston-Jones, G. & Reyher, C.K.H. (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. Journal of Comparative Neurology, 285, 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Mechawar, N., Saghatelyan, A., Grailhe, R., Scoriels, L., Gheusi, G., Gabellec, M.M., Lledo, P.M. & Changeux, J.P. (2004) Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 101, 9822–9826.

    Article  PubMed  CAS  Google Scholar 

  • Merkle, F.T., Mirzadeh, Z. & Alvarez-Buylla, A. (2007) Mosaic organization of neural stem cells in the adult brain. Science, 317, 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Mirich, J.M., Williams, N.C., Berlau, D.J. & Brunjes, P.C. (2002) Comparative study of aging in the mouse olfactory bulb. Journal of Comparative Neurology, 454, 361–372.

    Article  PubMed  Google Scholar 

  • Miwa, N. & Storm, D.R. (2005) Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the olfactory bulb promotes survival of newly formed granule cells. Journal of Neuroscience, 25, 5404–5412.

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi, A., Lu, J., Irving, R., Feng, G & Katz, L.C. (2006) In vivo imaging of juxtaglomerular neuron turnover in the mouse olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 103, 1912–1917.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K. (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Progress in Neurobiology, 29, 275–320.

    Article  PubMed  CAS  Google Scholar 

  • Mouret, A., Gheusi, G., Gabellec, M.M., de Chaumont, F., Olivo-Martin, J.C. & Lledo, P.M. (2008) Learning and survival of newly generated neurons: when time matters. Journal of Neuroscience, 28, 11511–11516.

    Article  PubMed  CAS  Google Scholar 

  • Najbauer, J. & Leon, M. (1995) Olfactory experience modulates apoptosis in the developing olfactory bulb. Brain Research, 674, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Naritsuka, H., Sakai, K., Hashikawa, T., Mori, K. & Yamaguchi, M. (2009) Perisomatic-targeting granule cells in the mouse olfactory bulb. Journal of Comparative Neurology, 515, 409–426.

    Article  PubMed  Google Scholar 

  • Ninkovic, J., Mori, T. & Gotz, M. (2007) Distinct modes of neuron addition in adult mouse neurogenesis. Journal of Neuroscience, 27, 10906–10911.

    Article  PubMed  CAS  Google Scholar 

  • Parrish-Aungst, S., Shipley, M.T., Erdelyi, F., Szabo, G. & Puche, A.C. (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. Journal of Comparative Neurology, 501, 825–836.

    Article  PubMed  CAS  Google Scholar 

  • Petreanu, L. & Alvarez-Buylla, A. (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. Journal of Neuroscience, 22, 6106–6113.

    PubMed  CAS  Google Scholar 

  • Rochefort, C. & Lledo, P.M. (2005) Short-term survival of newborn neurons in the adult olfactory bulb after exposure to a complex odor environment. European Journal of Neuroscience, 22, 2863–2870.

    Article  PubMed  Google Scholar 

  • Rochefort, C., Gheusi, G., Vincent, J. & Lledo, P.M. (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. Journal of Neuroscience, 22, 2679–2689.

    PubMed  CAS  Google Scholar 

  • Rosser, A.E. & Keverne, E.B. (1985) The importance of central noradrenergic neurons in the formation of an olfactory memory in the prevention of pregnancy block. Neuroscience, 15, 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G.M., Chen, W. & Greer, C. (2004) Olfactory bulb. In Shepherd, G. (ed) The synaptic organization of the brain, fifth Edition. Oxford University Press, New York, pp. 165–216.

    Chapter  Google Scholar 

  • Shipley, M.T. & Ennis, M. (1996) Functional organization of olfactory system. Journal of Neurobiology, 30, 123–176.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, R.M., Wilson, D.A. & Leon, M. (1989) Norepinephrine and learning-induced plasticity in infant rat olfactory system. Journal of Neuroscience, 9, 3998–4006.

    PubMed  CAS  Google Scholar 

  • Veyrac, A., Sacquet, J., Nguyen, V., Marien, M., Jourdan, F. & Didier, A. (2009) Novelty determines the effects of olfactory enrichment on memory and neurogenesis through noradrenergic mechanisms. Neuropsychopharmacology, 34, 786–795.

    Article  PubMed  CAS  Google Scholar 

  • Whitman, M.C. & Greer, C.A. (2007) Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. Journal of Neuroscience, 27, 9951–9961.

    Article  PubMed  CAS  Google Scholar 

  • Winner, B., Cooper-Kuhn, C.M., Aigner, R., Winkler, J. & Kuhn, H.G. (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. European Journal of Neuroscience, 16, 1681–1689.

    Article  PubMed  Google Scholar 

  • Woo, C.C. & Leon, M. (1995) Distribution and development of beta-adrenergic receptors in the rat olfactory bulb. Journal of Comparative Neurology, 352, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M. & Mori, K. (2005) Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proceedings of the National Academy of Sciences of the USA, 102, 9697–9702.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. (2005) Long-term sensory deprivation prevents ­dendritic spine loss in primary somatosensory cortex. Nature, 436, 261–265.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Yamaguchi, M. (2011). Development and Survival of Adult-Born Olfactory Neurons. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_15

Download citation

Publish with us

Policies and ethics