Neuronal Migration in the Adult Brain

  • Masato Sawada
  • Shi-hui Huang
  • Yuki Hirota
  • Naoko Kaneko
  • Kazunobu Sawamoto


Neuronal migration is an important process in brain development and homeostasis. It is not only a phenomenon of embryogenesis: it also occurs in the adult brain, following adult neurogenesis. In fact, throughout life, numerous new neurons generated in the adult subventricular zone take the long journey to the olfactory bulb. The adult-born neurons form chain-like aggregates and migrate inside glial tubes. In this chapter, we summarize current knowledge on the mechanisms of neuronal migration occurring in the adult brain of various animals under physiological and pathological conditions.


Olfactory Bulb Middle Cerebral Artery Occlusion Adult Brain Neuronal Migration Chain Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez-Buylla, A., and Garcia-Verdugo, J.M. (2002). Neurogenesis in adult subventricular zone. J Neurosci 22, 629–634.PubMedGoogle Scholar
  2. Andrade, N., Komnenovic, V., Blake, S.M., Jossin, Y., Howell, B., Goffinet, A., Schneider, W.J., and Nimpf, J. (2007). ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci USA 104, 8508–8513.PubMedCrossRefGoogle Scholar
  3. Anton, E.S., Ghashghaei, H.T., Weber, J.L., McCann, C., Fischer, T.M., Cheung, I.D., Gassmann, M., Messing, A., Klein, R., Schwab, M.H., et al. (2004). Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci 7, 1319–1328.PubMedCrossRefGoogle Scholar
  4. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8, 963–970.PubMedCrossRefGoogle Scholar
  5. Bellion, A., Baudoin, J.P., Alvarez, C., Bornens, M., and Metin, C. (2005). Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25, 5691–5699.PubMedCrossRefGoogle Scholar
  6. Belvindrah, R., Hankel, S., Walker, J., Patton, B.L., and Muller, U. (2007). Beta1 integrins ­control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27, 2704–2717.PubMedCrossRefGoogle Scholar
  7. Blake, S.M., Strasser, V., Andrade, N., Duit, S., Hofbauer, R., Schneider, W.J., and Nimpf, J. (2008). Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 27, 3069–3080.PubMedCrossRefGoogle Scholar
  8. Bolteus, A.J., and Bordey, A. (2004). GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24, 7623–7631.PubMedCrossRefGoogle Scholar
  9. Bovetti, S., Bovolin, P., Perroteau, I., and Puche, A.C. (2007a). Subventricular zone-derived ­neuroblast migration to the olfactory bulb is modulated by matrix remodelling. Eur J Neurosci 25, 2021–2033.PubMedCrossRefGoogle Scholar
  10. Bovetti, S., Hsieh, Y.C., Bovolin, P., Perroteau, I., Kazunori, T., and Puche, A.C. (2007b). Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J Neurosci 27, 5976–5980.PubMedCrossRefGoogle Scholar
  11. Brose, K., Bland, K.S., Wang, K.H., Arnott, D., Henzel, W., Goodman, C.S., Tessier-Lavigne, M., and Kidd, T. (1999). Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806.PubMedCrossRefGoogle Scholar
  12. Chazal, G., Durbec, P., Jankovski, A., Rougon, G., and Cremer, H. (2000). Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20, 1446–1457.PubMedGoogle Scholar
  13. Chiaramello, S., Dalmasso, G., Bezin, L., Marcel, D., Jourdan, F., Peretto, P., Fasolo, A., and De Marchis, S. (2007). BDNF/ TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci 26, 1780–1790.PubMedCrossRefGoogle Scholar
  14. Conover, J.C., Doetsch, F., Garcia-Verdugo, J.M., Gale, N.W., Yancopoulos, G.D., and Alvarez-Buylla, A. (2000). Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3, 1091–1097.PubMedCrossRefGoogle Scholar
  15. Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., et al. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459.CrossRefGoogle Scholar
  16. Curtis, M.A., Kam, M., Nannmark, U., Anderson, M.F., Axell, M.Z., Wikkelso, C., Holtas, S., van Roon-Mom, W.M., Bjork-Eriksson, T., Nordborg, C., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–1249.PubMedCrossRefGoogle Scholar
  17. Doetsch, F., and Alvarez-Buylla, A. (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93, 14895–14900.PubMedCrossRefGoogle Scholar
  18. Emsley, J.G., and Hagg, T. (2003). alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol 183, 273–285.PubMedCrossRefGoogle Scholar
  19. Etienne-Manneville, S., and Hall, A. (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756.CrossRefGoogle Scholar
  20. Garzotto, D., Giacobini, P., Crepaldi, T., Fasolo, A., and De Marchis, S. (2008). Hepatocyte growth factor regulates migration of olfactory interneuron precursors in the rostral migratory stream through Met-Grb2 coupling. J Neurosci 28, 5901–5909.PubMedCrossRefGoogle Scholar
  21. Gascon E, Vutskits L, Kiss JZ (2010) The role of PSA-NCAM in adult neurogenesis. Adv Exp Med Biol 663, 127–136.PubMedCrossRefGoogle Scholar
  22. Gil-Perotin, S., Duran-Moreno, M., Belzunegui, S., Luquin, M.R., and Garcia-Verdugo, J.M. (2009). Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream. J Comp Neurol 514, 533–554.PubMedCrossRefGoogle Scholar
  23. Guan, K.L., and Rao, Y. (2003). Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4, 941–956.PubMedCrossRefGoogle Scholar
  24. Hack, I., Bancila, M., Loulier, K., Carroll, P., and Cremer, H. (2002). Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5, 939–945.PubMedCrossRefGoogle Scholar
  25. Hayashi, T., Noshita, N., Sugawara, T., and Chan, P.H. (2003). Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 23, 166–180.PubMedCrossRefGoogle Scholar
  26. Higginbotham, H., Tanaka, T., Brinkman, B.C., and Gleeson, J.G. (2006). GSK3beta and PKCzeta function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol Cell Neurosci 32, 118–132.PubMedCrossRefGoogle Scholar
  27. Hirota, Y., Ohshima, T., Kaneko, N., Ikeda, M., Iwasato, T., Kulkarni, A.B., Mikoshiba, K., Okano, H., and Sawamoto, K. (2007). Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci 27, 12829–12838.PubMedCrossRefGoogle Scholar
  28. Hu, H. (1999). Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23, 703–711.PubMedCrossRefGoogle Scholar
  29. Hu, H., and Rutishauser, U. (1996). A septum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron 16, 933–940.PubMedCrossRefGoogle Scholar
  30. Imitola, J., Raddassi, K., Park, K.I., Mueller, F.J., Nieto, M., Teng, Y.D., Frenkel, D., Li, J., Sidman, R.L., Walsh, C.A., et al. (2004). Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101, 18117–18122.PubMedCrossRefGoogle Scholar
  31. Kam, M., Curtis, M.A., McGlashan, S.R., Connor, B., Nannmark, U., and Faull, R.L. (2009). The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J Chem Neuroanat 37, 196–205.PubMedCrossRefGoogle Scholar
  32. Kaneko, N., Marín, O., Koike, M., Hirota, Y., Uchiyama, Y., Wu, J.Y., Lu, Q., Tessier-Lavigne, M., Alvarez-Buylla, A., Okano, H., et al. (2010). New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67, 213–223.PubMedCrossRefGoogle Scholar
  33. Kirschenbaum, B., Doetsch, F., Lois, C., and Alvarez-Buylla, A. (1999). Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19, 2171–2180.PubMedGoogle Scholar
  34. Koizumi, H., Higginbotham, H., Poon, T., Tanaka, T., Brinkman, B.C., and Gleeson, J.G. (2006). Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci 9, 779–786.PubMedCrossRefGoogle Scholar
  35. Kojima, T., Hirota, Y., Ema, M., Takahashi, S., Miyoshi, I., Okano, H., and Sawamoto, K. (2010). Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28, 545–554.PubMedGoogle Scholar
  36. Kornack, D.R., and Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98, 4752–4757.PubMedCrossRefGoogle Scholar
  37. Lee, S.R., Kim, H.Y., Rogowska, J., Zhao, B.Q., Bhide, P., Parent, J.M., and Lo, E.H. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26, 3491–3495.PubMedCrossRefGoogle Scholar
  38. Li, H.S., Chen, J.H., Wu, W., Fagaly, T., Zhou, L., Yuan, W., Dupuis, S., Jiang, Z.H., Nash, W., Gick, C., et al. (1999). Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807–818.PubMedCrossRefGoogle Scholar
  39. Liu, G., and Rao, Y. (2003). Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J Neurosci 23, 6651–6659.PubMedGoogle Scholar
  40. Lois, C., and Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.PubMedCrossRefGoogle Scholar
  41. Lois, C., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science 271, 978–981.PubMedCrossRefGoogle Scholar
  42. Luskin, M.B. (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.PubMedCrossRefGoogle Scholar
  43. Mason, H.A., Ito, S., and Corfas, G. (2001). Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: inducers, inhibitors, and repellents. J Neurosci 21, 7654–7663.PubMedGoogle Scholar
  44. Merkle, F.T., Mirzadeh, Z., and Alvarez-Buylla, A. (2007). Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384.PubMedCrossRefGoogle Scholar
  45. Murase, S., and Horwitz, A.F. (2002). Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22, 3568–3579.PubMedGoogle Scholar
  46. Murase, S., Cho, C., White, J.M., and Horwitz, A.F. (2008). ADAM2 promotes migration of neuroblasts in the rostral migratory stream to the olfactory bulb. Eur J Neurosci 27, 1585–1595.PubMedCrossRefGoogle Scholar
  47. Ng, K.L., Li, J.D., Cheng, M.Y., Leslie, F.M., Lee, A.G., and Zhou, Q.Y. (2005). Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 308, 1923–1927.PubMedCrossRefGoogle Scholar
  48. Nguyen-Ba-Charvet, K.T., Picard-Riera, N., Tessier-Lavigne, M., Baron-Van Evercooren, A., Sotelo, C., and Chedotal, A. (2004). Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci 24, 1497–1506.PubMedCrossRefGoogle Scholar
  49. Ohab, J.J., Fleming, S., Blesch, A., and Carmichael, S.T. (2006). A neurovascular niche for neurogenesis after stroke. J Neurosci 26, 13007–13016.PubMedCrossRefGoogle Scholar
  50. Okuyama-Yamamoto, A., Yamamoto, T., Miki, A., and Terashima, T. (2005). Changes in reelin expression in the mouse olfactory bulb after chemical lesion to the olfactory epithelium. Eur J Neurosci 21, 2586–2592.PubMedCrossRefGoogle Scholar
  51. Ono, K., Tomasiewicz, H., Magnuson, T., and Rutishauser, U. (1994). N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609.PubMedCrossRefGoogle Scholar
  52. Paratcha, G., Ibanez, C.F., and Ledda, F. (2006). GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci 31, 505–514.PubMedCrossRefGoogle Scholar
  53. Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N., and Ferriero, D.M. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52, 802–813.PubMedCrossRefGoogle Scholar
  54. Pencea, V., Bingaman, K.D., Freedman, L.J., and Luskin, M.B. (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172, 1–16.PubMedCrossRefGoogle Scholar
  55. Puverel, S., Nakatani, H., Parras, C., and Soussi-Yanicostas, N. (2009). Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J Comp Neurol 512, 232–242.PubMedCrossRefGoogle Scholar
  56. Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M.S., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494, 415–434.PubMedCrossRefGoogle Scholar
  57. Saghatelyan, A., de Chevigny, A., Schachner, M., and Lledo, P.M. (2004). Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat Neurosci 7, 347–356.PubMedCrossRefGoogle Scholar
  58. Sanai, N., Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel-Garcia Verdugo, J., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744.CrossRefGoogle Scholar
  59. Sawamoto, K., Hirota, Y., Alfaro-Cervello, C., Soriano-Navarro, M., He, X., Hayakawa-Yano, Y., Yamada, M., Hikishima, K., Tabata, H., Iwanami, A., et al. (2011). Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol 519, 690–713.PubMedCrossRefGoogle Scholar
  60. Sawamoto, K., Wichterle, H., Gonzalez-Perez, O., Cholfin, J.A., Yamada, M., Spassky, N., Murcia, N.S., Garcia-Verdugo, J.M., Marin, O., Rubenstein, J.L., et al. (2006). New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632.PubMedCrossRefGoogle Scholar
  61. Schaar, B.T., and McConnell, S.K. (2005). Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci USA 102, 13652–13657.PubMedCrossRefGoogle Scholar
  62. Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340.PubMedCrossRefGoogle Scholar
  63. Snapyan, M., Lemasson, M., Brill, M.S., Blais, M., Massouh, M., Ninkovic, J., Gravel, C., Berthod, F., Gotz, M., Barker, P.A., et al. (2009). Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci 29, 4172–4188.PubMedCrossRefGoogle Scholar
  64. Solecki, D.J., Model, L., Gaetz, J., Kapoor, T.M., and Hatten, M.E. (2004). Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci 7, 1195–1203.PubMedCrossRefGoogle Scholar
  65. Tanaka, T., Serneo, F.F., Higgins, C., Gambello, M.J., Wynshaw-Boris, A., and Gleeson, J.G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165, 709–721.PubMedCrossRefGoogle Scholar
  66. Thored, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2006). Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739–747.PubMedCrossRefGoogle Scholar
  67. Thored, P., Wood, J., Arvidsson, A., Cammenga, J., Kokaia, Z., and Lindvall, O. (2007). Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 38, 3032–3039.PubMedCrossRefGoogle Scholar
  68. Tsai, L.H., and Gleeson, J.G. (2005). Nucleokinesis in neuronal migration. Neuron 46, 383–388.PubMedCrossRefGoogle Scholar
  69. Umeshima, H., Hirano, T., and Kengaku, M. (2007). Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA 104, 16182–16187.PubMedCrossRefGoogle Scholar
  70. Wichterle, H., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1997). Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791.PubMedCrossRefGoogle Scholar
  71. Wong, K., Ren, X.R., Huang, Y.Z., Xie, Y., Liu, G., Saito, H., Tang, H., Wen, L., Brady-Kalnay, S.M., Mei, L., et al. (2001). Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107, 209–221.PubMedCrossRefGoogle Scholar
  72. Wu, W., Wong, K., Chen, J., Jiang, Z., Dupuis, S., Wu, J.Y., and Rao, Y. (1999). Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336.CrossRefGoogle Scholar
  73. Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J.M., Sunabori, T., Sakaguchi, M., Adachi, K., Kojima, T., Hirota, Y., Kawase, T., et al. (2006). Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26, 6627–6636.PubMedCrossRefGoogle Scholar
  74. Yan, Y.P., Sailor, K.A., Lang, B.T., Park, S.W., Vemuganti, R., and Dempsey, R.J. (2007). Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27, 1213–1224.PubMedCrossRefGoogle Scholar
  75. Zhang, R.L., Chopp, M., Gregg, S.R., Toh, Y., Roberts, C., Letourneau, Y., Buller, B., Jia, L., S, P.N.D., and Zhang, Z.G. (2009). Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J Cereb Blood Flow Metab 29, 1240–1250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Masato Sawada
    • 1
  • Shi-hui Huang
    • 1
  • Yuki Hirota
    • 1
  • Naoko Kaneko
    • 1
  • Kazunobu Sawamoto
    • 1
  1. 1.Department of Developmental and Regenerative Biology, Institute of Molecular MedicineNagoya City University Graduate School of Medical SciencesMizuho-kuJapan

Personalised recommendations