Skip to main content

The Discovery of Adult Mammalian Neurogenesis

  • Chapter
Neurogenesis in the Adult Brain I

Abstract

Visualizing proliferating cells with 3H-thymidine autoradiography, we discovered in the early 1960s that the microneurons (granule cells) of the hippocampal dentate gyrus and the olfactory bulb continue to be produced through adulthood. We later demonstrated that the precursors of hippocampal granule cells proliferate in the dentate subgranular zone, and that this secondary germinal matrix is far more prominent in a carnivore (young cats) than in rodents (rats and guinea pigs). By destroying these proliferating precursor cells with low-level X-rays, we prepared rats that lacked 85% of the normal complement of granule cells, the same proportion that we found to be generated postnatally with quantitative histo­logy and autoradiography. Behavioral tests established that these “degranulated” rats displayed abnormalities comparable to those following extensive hippocampal lesions. We also showed that the granule cells of the olfactory bulb are generated in the persisting subependymal layer of the anterior forebrain and migrate to the olfactory bulb by way of a hitherto unidentified structure, the rostral migratory stream. We discuss why the neuroscience community may have refused to accept these multipronged demonstrations and our laboratory lost its public financing by the mid-1980s.

Manuscript submitted in its present format on January 23, 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J (1962a) Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp Neurol 5:302–318

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1962b) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1963a) Regional utilization of leucine-H3 by normal rat brain: Microdensitometric evaluation of autoradiograms. J Histochem Cytochem 11:741–750

    Article  CAS  Google Scholar 

  • Altman J (1963b) Differences in the utilization of tritiated leucine by single neurones in normal and exercised rats: An autoradiographic investigation with microdensitometry. Nature 199:777–780

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1963c) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1966a) Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 128:431–474

    Article  Google Scholar 

  • Altman J (1966b) Organic Foundations of Animal Behavior. New York: Holt, Rinehart and Winston

    Google Scholar 

  • Altman J (1966c) Proliferation and migration of undifferentiated precursor cell in the rat during postnatal gliogenesis. Exp Neurol 16:263–278

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1967) Postnatal growth and differentiation of the mammalian brain, with implications for a morphological theory of memory. In, Quarton G, Melnechuk T, Schmitt FO (eds) The Neurosciences: A Study Program, pp. 723–743. New York: Rockefeller Univ Press

    Google Scholar 

  • Altman J (1969a) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969b) DNA metabolism and cell proliferation. In, Lajtha A (ed) Handbook of Neurochemistry, vol. 2, pp. 137–182. New York: Plenum Press

    Google Scholar 

  • Altman J (1970) Postnatal neurogenesis and the problem of neural plasticity. In, Himwich WA (ed) Developmental Neurobiology, pp. 197–237. Springfield IL: Thomas

    Google Scholar 

  • Altman J (1986) An animal model of minimal brain dysfunction. In, Lewis M (ed) Learning Disabilities and Prenatal Risk, pp. 241–304. Urbana: Univ Illinois Press

    Google Scholar 

  • Altman J (1987) Morphological and behavioral markers of environmentally induced retardation of brain development: An animal model. Environ Health Perspect 74:153–168

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Altman, E (1962) Increased utilization of an amino acid and cellular proliferation demonstrated autoradiographically in the optic pathways of pigeons. Exp Neurol 6:142–151

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Anderson WJ (1971) Irradiation of the cerebellum in infant rats with low-level X-ray: Histological and cytological effects during infancy and adulthood. Exp Neurol 30:492–509

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Anderson WJ (1972) Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth. J Comp Neurol 146:355–406

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1975) Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions. In, Isaacson RL, Pribram KH (eds) The Hippocampus, vol. 1, pp. 95–122. New York: Plenum Press

    Google Scholar 

  • Altman J, Bayer SA (1982) Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res Suppl 6:8–46

    Article  Google Scholar 

  • Altman J, Bayer SA (1990a) Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J Comp Neurol 301:325–342

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1990b) Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J Comp Neurol 301:343–364

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1990c) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301:365–381

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1993) Are new neurons formed in the brains of adult mammals? A progress report, 1962–1992. In, Cuello AC (ed) Neuronal Cell Death and Repair, pp. 203–225. Amsterdam: Elsevier (Restorative Neurology, vol. 6)

    Google Scholar 

  • Altman J, Bayer SA (1995) Atlas of Prenatal Rat Brain Development. Boca Raton, FL: CRC Press

    Google Scholar 

  • Altman J, Bayer SA (1997) Development of the Cerebellar System in Relation to its Evolution, Structure and Functions. Boca Raton, FL: CRC Press

    Google Scholar 

  • Altman J, Bayer SA (2001) Development of the Human Spinal Cord: An Interpretation Based on Experimental Studies in Animals. New York: Oxford Univ Press

    Google Scholar 

  • Altman J, Bayer SA (2002) Regional differences in the stratified transitional field and the honeycomb matrix of the developing human cerebral cortex. J Neurocytol 31:613–632

    Article  PubMed  Google Scholar 

  • Altman J, Bayer SA (2007) Concluding essay. In, Bayer SA, Altman J (eds) The Human Brain During the Early First Trimester, pp. 426–489. Boca Raton, FL: CRC Press (Atlas of Human Central Nervous System Development, vol. 5)

    Google Scholar 

  • Altman J, Das GD (1964a) Autoradiographic and histological investigation of changes in the visual system of rats after unilateral enucleation. Anat Rec 148:535–545

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1964b) Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature 204:1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1965a) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1965b) Postnatal origin of microneurones in the rat brain. Nature 207:953–956

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. J Comp Neurol 126:337–390

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1967) Postnatal neurogenesis in the guinea pig. Nature 214:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD, Anderson WJ (1968) Effects of infantile handling on morphological development of the rat brain: An exploratory study. Dev Psychobiol 1:10–20

    Article  Google Scholar 

  • Altman J, Anderson WJ, Wright KA (1969a) Early effects of X-irradiation of the cerebellum in infant rats: Decimation and reconstitution of the external granular layer. Exp Neurol 24:196–216

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Anderson WJ, Wright KA (1969b) Reconstitution of the external granular layer of the cerebellar cortex in infant rats after low-level X-irradiation. Anat Rec 163:453–472

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Anderson WJ, M Strop (1971) Retardation of cerebellar and motor development by focal X-irradiation during infancy. Physiol Behav 7:143–150

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Nottebohm F (1988) Migration of young neurons in adult avian brain. Nature 335:353–354

    Article  PubMed  CAS  Google Scholar 

  • Angevine JB (1965) Time of neuron origin in the hippocampal region: An autoradiographic study in the mouse. Exp Neurol Suppl 2:1–70

    Google Scholar 

  • Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1982) Changes in the total number of dentate granule cells in juvenile and adult rats: A correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res 46:315–323

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J (1974) Hippocampal development in the rat: Cytogenesis and morphogenesis examined with autoradiography and low-level X-irradiation. J Comp Neurol 158:55–80

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J (1975) Radiation-induced interference with postnatal hippocampal cytogenesis in rats and its long-term effects on the acquisition of neurons and glia. J Comp Neurol 163:1–20

    Article  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical Development. New York: Raven Press

    Google Scholar 

  • Bayer SA, Altman J (2002–2007) Atlas of Human Central Nervous System Development (5 volumes). Boca Raton, FL: CRC Press (Taylor & Francis Group)

    Google Scholar 

  • Bayer SA, Altman J (2004) Development of the telencephalon: Neural stem cells, neurogenesis, and neuronal migration. In, Paxinos G (ed) The Rat Nervous System (Third ed), pp. 27–73. New York: Elsevier

    Google Scholar 

  • Bayer SA, Brunner RL, Hine R, Altman J (1973) Behavioural effects of interference with the postnatal acquisition of hippocampal granule cells. Nature New Biol 242:222–224

    PubMed  CAS  Google Scholar 

  • Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892

    Article  PubMed  CAS  Google Scholar 

  • Bennett G (1987) Changes in intermediate filament composition during neurogenesis. Curr Topics Dev Biol 21:151–182

    Article  CAS  Google Scholar 

  • Bignami A, Dahl D (1974) Astrocyte-specific protein and neuroglial differentiation: An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol 153:27–38

    Article  PubMed  CAS  Google Scholar 

  • Brunner RL, Altman J (1973) Locomotor deficits in adult rats with moderate to massive retardation of cerebellar development during infancy. Behav Biol 9:169–188

    Article  PubMed  CAS  Google Scholar 

  • Brunner RL, Hagbloom SJ, Gazarra RA (1974) Effects of hippocampal X-irradiation-produced granule-cell agenesis on instrumental runway performance in rats. Physiol Behav 13:485–494

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Granados JL, Greene PL, Amsel A (1994) Selective activity enhancement and persistence in weanling rats after hippocampal x-irradiation in infancy. Behav Neural Biol 61:251–259

    Article  PubMed  CAS  Google Scholar 

  • Englund C, Fink A, Lau C et al (2005) Pax6, Tbr 2, and TBR1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Garfield E (1981) The 1,000 contemporary scientists most-cited 1965–1978. Part I. The basic list and introduction. Curr Contents 41:5–14

    Google Scholar 

  • Gazzara RA, Altman J (1981) Early postnatal X-irradiation of the hippocampus and discrimination learning in adult rats. J Comp Physiol Psychol 95:484–495

    Article  PubMed  CAS  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Reeves AJ, Graziano MSA et al (1999) Neurogenesis in the neocortex of adult primates. Science 286:548–552

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: Death of a dogma. Nat Rev Neurosci 1:67–73

    Article  PubMed  CAS  Google Scholar 

  • Haggbloom, SJ, Brunner RL, Bayer SA (1974) Effects of hippocampal granule-cell agenesis on acquisition of escape from fear and one-way active-avoidance responses. J Comp Physiol Psychol 95:86:447–457

    Article  Google Scholar 

  • Highfield DA, Hu D, Amsel A (1998) Alleviation of x-irradiation-based deficit in memory-based learning by D-amphetamine: Suggestions for attention deficit-hyperactivity disorder. Proc Natl Acad Sci USA 95:5785–5788

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M (1970) Developmental Neurobiology. New York: Holt, Rinehart and Winston

    Google Scholar 

  • Jacobson M (1978) Developmental Neurobiology. Second ed. New York: Plenum Press

    Google Scholar 

  • Jessell TM (1991) Reactions of neurons to injury. In, Kandel E et al (eds) Principles of Neural Science (Third ed), pp. 258–269. New York: Elsevier

    Google Scholar 

  • Kaplan MS (2001) Environment complexity stimulates visual cortex neurogenesis: Death of a dogma and a research career. Trends Neurosci 24:617–620

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G (2006) Adult Neurogenesis: Stem Cells and Neuronal Development in the Adult Brain. New York: Oxford Univ Press

    Google Scholar 

  • Kolb B, Pedersen B, Ballermann M et al (1999) Embryonic and postnatal injections of bromodeoxyuridine produce age-dependent morphological and behavioral abnormalities. J Neurosci 19:2337–2346

    PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773

    Article  PubMed  CAS  Google Scholar 

  • Lederberg J (1968) Stretching out the period of the brain’s development. Washington Post, October 26, p. A15

    Google Scholar 

  • Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. J Neurosci 1:27–39

    PubMed  CAS  Google Scholar 

  • Lund RD (1978) Development and Plasticity of the Brain: An Introduction. New York: Oxford Univ Press

    Google Scholar 

  • Namba T, Mochizuki H, Onodera M et al (2005) The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci 22:1928–1941

    Article  PubMed  Google Scholar 

  • Nottebohm F (2002) Neuronal replacement in adult brain. Brain Res Bull 57:737–749

    Article  PubMed  Google Scholar 

  • Patterson PH, Purves D (1982) Readings in Developmental Neurobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

    Google Scholar 

  • Pellegrino LJ, Altman J (1979) Effects of differential interference with postnatal cerebellar neurogenesis on motor performance, activity level, and maze learning of rats. J Comp Physiol Psychol 93:1–33

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Lichtman JW (1985) Principles of Neural Development. Sunderland, MA: Sinauer Associates

    Google Scholar 

  • Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054–1056

    Article  PubMed  CAS  Google Scholar 

  • Rosselli-Austin L, Altman J (1979) The postnatal development of the main olfactory bulb of the rat. J Dev Physiol 1:295–313

    PubMed  CAS  Google Scholar 

  • Schacher S (1981) Determination and differentiation in the development of the nervous system. In, Kandel ER, Schwartz JH (eds) Principles of Neural Science, pp. 503–520. New York: Elsevier

    Google Scholar 

  • Sekerkova G, Ilijic E, Mugnaini E (2004) Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in the rats. J Comp Neurol 470:221–239

    Article  PubMed  Google Scholar 

  • Seri B, García-Verdugo JM, McEwen BS et al (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  • Smart I (1961) The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J Comp Neurol 116:325–347

    Article  Google Scholar 

  • Smart I, Leblond CP (1961) Evidence for division and transformations of neuroglia cells in the mouse brain, as derived from radioautography after injection of thymidine-H3. J Comp Neurol 116:349–367

    Article  Google Scholar 

  • Steiner B, Kronenberg G, Jessberger S et al (2004) Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 46:41–52

    Article  PubMed  Google Scholar 

  • Taupin P (2006) BrdU immunohistochemistry of studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I thank Dr. Tatsunori Seki for the invitation to present this personal memoir, and dedicate this contribution to Dr. Shirley Bayer who shares credit for all that we have accomplished together in the last 3–4 decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Altman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Altman, J. (2011). The Discovery of Adult Mammalian Neurogenesis. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_1

Download citation

Publish with us

Policies and ethics