Skip to main content

Construction of a Novel Strictly NADPH-Dependent Pichia stipitis Xylose Reductase by Site-Directed Mutagenesis for Effective Bioethanol Production

  • Conference paper
  • 1456 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Xylose reductase (XR) is one of the key enzymes for bio-ethanol production from lignocellulosic biomass. Intercellular redox imbalance, caused by different coenzyme specificity of XR and Xylitol dehydrogenase (XDH), has been thought to be one of the main factors of xylitol excretion. We previously succeeded by protein engineering to improve the ethanol production by reverse the XDH dependence from NAD+ to NADP+. In this study, we employed protein engineering to construct a novel strictly NADPH dependent XR from Pichia stipitis by site directed mutagenesis, in order to effective recycling of cofactor between XR and XDH, which subsequently reduce xylitol accumulation. Double mutant E223G/S271A showed strictly NADPH dependent with 90% of wild-type activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  Google Scholar 

  2. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  Google Scholar 

  3. Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9

    Article  Google Scholar 

  4. Liang L, Zhang J, Lin Z (2007) Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microb Cell Fact 6:36

    Article  Google Scholar 

  5. Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9

    Article  Google Scholar 

  6. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130:316–319

    Article  Google Scholar 

  7. Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349

    Article  Google Scholar 

  8. Wilson DK, Kavanagh KL, Klimacek M, Nidetzky B (2003) The xylose reductase (AKR2B5) structure: homology and divergence from other aldo-keto reductases and opportunities for protein engineering. Chem Biol Interact 143–144:515–521

    Article  Google Scholar 

  9. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373:319–326

    Article  Google Scholar 

  10. Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC (2007) Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun 359:323–329

    Article  Google Scholar 

  11. Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K (2007) The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 71:1365–1369

    Article  Google Scholar 

  12. Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009) Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818–3822

    Article  Google Scholar 

  13. Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105:296–299

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan. It was also supported by a Grant-in-Aid for Young Scientists (B) (no. 21760636 to S.W.) and the Global Center of Excellence (GCOE) program for the “Energy Science in the Age of Global Warming,” a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Kodaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this paper

Cite this paper

Khattab, S.M.R. et al. (2011). Construction of a Novel Strictly NADPH-Dependent Pichia stipitis Xylose Reductase by Site-Directed Mutagenesis for Effective Bioethanol Production. In: Yao, T. (eds) Zero-Carbon Energy Kyoto 2010. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53910-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53910-0_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53909-4

  • Online ISBN: 978-4-431-53910-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics