Advertisement

Monitoring Groundwater Variations Using Precise Gravimetry on Land and from Space

  • Yoichi Fukuda

Abstract

In order to establish a new technique for monitoring the groundwater variations, we investigated the applicability of precise in-situ gravity measurements and the GRACE (Gravity Recovery and Climate Experiment) satellite gravity data. A new scheme for in-situ measurements that combines absolute and relative gravity measurements as well as GPS measurements has been proposed to monitor groundwater variation and associated land subsidence as well. For this purpose, we introduced a portable type absolute gravimeter (Micro-G LaCoste Inc. A10) which can be used for field surveys. We conducted several test surveys and confirmed that the gravimeter can achieve a 10 μgal (100 nm/s2) or better accuracy in the field surveys. GRACE is providing extremely high precision gravity field data from space. These data are precise enough to reveal the gravity changes due to large scale groundwater variations. Using the GRACE data, we estimated terrestrial water storage (TWS) variations in the Indochina Peninsula. The results showed good agreements with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models basically. The agreements can be improved by tuning the model parameters such as current velocity of river flow. It means that the GRACE TWS can be used as a constraining condition of the models. We also detected the mass trends in the Indochina Peninsula and the gravity changes due to the 2006 drought in Australia. This suggested that GRACE data should be applicable for monitoring secular or long-term groundwater variations at the continental scale as well. Finally, as a future prospection, we discuss the role of hydrological models which connect in-situ and satellite observations.

Keywords

Land Subsidence Gravity Change Gravity Measurement Indochina Peninsula Absolute Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe M, Takemoto S, Fukuda Y, Higashi T, Imanishi Y, Iwano S, Ogasawara S, Kobayashi Y, Takiguchi H, Dwipa S, Kusuma DS (2006) Hydrological effects on the superconducting gravimeter observation in Bandung. J Geodyn 41:288–295. doi: 10.1016/j.jog.2005.08.030 CrossRefGoogle Scholar
  2. Abidin HZ, Andreas H, Djaja R, Darmawan D, Gamal M (2008) Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solut 12:23–32. doi: 10.1007/s10291-007-0061-0 CrossRefGoogle Scholar
  3. Allis RG, Hunt TM (1986) Analysis of exploitation induced gravity changes at Wairakei geo-thermal field. Geophysics 51:1647–1660CrossRefGoogle Scholar
  4. Bettadpur S (2007) UTCSR level-2 processing standards document for level-2 product release 0004, GRACE 327-742 (CSR-GR-03-03). Center for Space Research, The University of Texas at Austin, AustinGoogle Scholar
  5. BoM (Bureau of Meteorology) (2006) Drought statement issued 4th December. http://www.bom.gov.au/announcements/media_releases/climate/drought/20061204.shtml
  6. Bower D, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Int 106:353–369. doi: 10.1016/S0031-9201(97) 00101-5 CrossRefGoogle Scholar
  7. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32:L14405. doi: 10.1029/2005GL022964 CrossRefGoogle Scholar
  8. Chen JL, Wilson CR, Famiglietti JS, Rodell M (2007) Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. J Geodyn 81:237–245. doi: 10.1007/s00190-006-0104-2 Google Scholar
  9. CNES/GRGS (2009) Time-variable gravity fields (RL02). http://bgi.cnes.fr:8110/geoid-variations/RL02.html
  10. Famiglietti J, Chen J, Rodell M, Seo K, Syed T, Wilson C (2004) Terrestrial water storage variations from GRACE. Presented at IAG international symposium, gravity, geoid and space missions – GGSM2004, 2004, PortoGoogle Scholar
  11. Flechtner F (2007) GFZ level-2 processing standards document for level-2 product release 0004, GRACE 327-743 (GR-GFZ-STD-001). GeoForschungszentrium Potsdam, WesslingGoogle Scholar
  12. Fukuda Y, Higashi T, Takemoto S, Abe M, Dwipa S, Kusuma DS, Andan A, Doi K, Imanishi Y, Arduino G (2004) The first absolute gravity measurements in Indonesia. J Geodyn 38:489–501CrossRefGoogle Scholar
  13. Fukuda Y, Yamamoto K, Hasegawa T, Nakaegawa T, Nishijima J, Taniguchi M (2009) Monitoring groundwater variation by satellite and implications for in-situ gravity measurements. Sci Total Environ 407:3173–3180. doi: 10.1016/j.scitotenv.2008.05.018 CrossRefGoogle Scholar
  14. Hasegawa T, Fukuda Y, Yamamoto K, Nakaegawa T (2008) The 2006 Australian drought detected by GRACE. In: Taniguchi M et al (eds) Headwaters to the ocean. Taylor & Francis Group, London, pp 363–367, ISBN 978-0-415-47279-1Google Scholar
  15. Hasegawa T, Fukuda Y, Yamamoto K, Nakaegawa T, Tamura Y (2009) Long-term trends of terrestrial water storage in south-east Australia detected by GRACE. In: The 3rd international symposium, human impacts on urban subsurface environment, 17–20 November 2009, Abstract, p 22Google Scholar
  16. Jekili C (1981) Alternative methods to smooth the Earth’s gravity field: Rep. 327. Department of Geodetic Science and Survey, Ohio State University, ColumbusGoogle Scholar
  17. Lambert A, Beaumont C (1977) Nano variations in gravity due to seasonal groundwater movements: Implications for the gravitational detection of tectonic movements. J Geophys Res 82:297–306CrossRefGoogle Scholar
  18. MGL (Micro-g LaCoste Inc.) (2008) A-10 portable gravimeter user’s manual. http://www.microglacoste.com/pdf/A-10Manual.pdf, 58 pp
  19. Nakaegawa T, Tokuhiro T, Itoh A, Hosaka M (2007) Evaluation of seasonal cycles of hydrological processes in Japan meteorological agency land data analysis. Pap Meteorol Geophys 58:73–83. doi: 10.2467/mripapers.58.73 CrossRefGoogle Scholar
  20. Nishijima J, Fujimitsu Y, Ehara S (2007) Geothermal reservoir monitoring using repeat gravity measurement at Takigami geothermal field, central Kyushu, Japan. In: Proceedings of Renewable Energy 2006 (CD-ROM).Google Scholar
  21. Nohara D, Kitoh A, Hosaka M, Oki T (2006) Impact of climate change on river discharge projected by multimodel ensemble. J Hydromet 7:1076–1089. doi: 10.1175/JHM531.1 CrossRefGoogle Scholar
  22. Nordquist G, Protacio JAP, Acuna JA (2004) Precision gravity monitoring of the Bulalo geothermal field, Philippines: independent checks and constraints on numerical simulation. Geothermics 33:37–56CrossRefGoogle Scholar
  23. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteor Soc Japan 85:369–432CrossRefGoogle Scholar
  24. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85(3):381–394CrossRefGoogle Scholar
  25. Schemerge D, Francis O (2006) Set standard deviation, repeatability and offset of absolute gravimeter A10-008. Metrologia 43:414–418. doi: 10.1088/0026-1394/43/5/012 CrossRefGoogle Scholar
  26. Schepers JHG (1926) De Primaire Kringen Ia En II, Benevens Het. Stadsnet Van Batavia En Weltevreden, No.1 De Nauwkeurrig-heidswaterpassing Van Java. Topografische Dienst In Neder-lansch-Indie. Weltevreden Reproductiebedrifj Top. Dienst t, 64 pp, with loose collection of maps in pocket at end.Google Scholar
  27. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) Simple Biosphere model (SiB) for use within general circulation model. J Atmos Sci 43:505–531CrossRefGoogle Scholar
  28. Sofyan Y (2009) Repeat gravity measurement for groundwater level monitoring – an application to the reservoir monitoring in geothermal power plant. In: The 3rd international symposium, human impacts on urban subsurface environment, 17–20 November 2009, Abstract, p 23Google Scholar
  29. Suharto P (1971) Precise leveling in Indonesia. Final undergraduate report. Department of Geodetic Engineering, Institute of Technology, BandungGoogle Scholar
  30. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/ 2005GL025285 CrossRefGoogle Scholar
  31. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39:1223. doi: 10.1029/2002WR001808 CrossRefGoogle Scholar
  32. Tanaka et al (2009) The effects of urbanization on shallow aquifer recharge in Asian megacities: an application of the SWAT model to Bangkok. In: The 3rd international symposium, human impacts on urban subsurface environment, 17–20 November 2009, Abstract, p 4Google Scholar
  33. Taniguchi M, Shimada J, Fukuda Y, Onodera S, Yamamo M, Yoshikoshi A, Kaneko S (2008) Degradation of subsurface environment in Asian coastal cities. In: Taniguchi M et al (eds) Headwaters to the ocean. Taylor & Francis Group, London, pp 605–610, ISBN 978-0-415-47279-1Google Scholar
  34. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004a) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  35. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004b) GRACE measurements of mass variability in the earth system. Science 203:503–505CrossRefGoogle Scholar
  36. Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30230CrossRefGoogle Scholar
  37. Watkins MM (2007) JPL level-2 processing standards document for level-2 product release 04, GRACE 327-744. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  38. Yamamoto K, Fukuda Y, Nakaegawa T, Nishijima J (2007) Landwater variation in four major river basins of the Indochina peninsula as revealed by GRACE. Earth Planet Space 59:193–200Google Scholar
  39. Yamamoto K, Hasegawa T, Fukuda Y, Nakaegawa T, Taniguchi M (2008) Improvement of JLG terrestrial water storage model using GRACE satellite gravity data. In: Taniguchi M et al (eds) Headwaters to the ocean. Taylar & Francis Group, London, pp 369–374, ISBN 978-0-415-47279-1CrossRefGoogle Scholar
  40. Yamamoto K, Fukuda Y, Nakaegawa T, Hasegawa T, Taniguchi M (2009) Study on landwater variation over Chao Phraya river basin using GRACE satellite gravity data. In: The 3rd international symposium, human impacts on urban subsurface environment, 17–20 November 2009, Abstract, p 21Google Scholar
  41. Yamanaka T, Mikita M (2009) Disturbance of groundwater flow system due to excessive pumping in the Bangkok metropolitan area, Thailand. In: The 3rd international symposium, human impacts on urban subsurface environment, 17–20 November 2009, Abstract, p 14Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of GeophysicsKyoto UniversityKyotoJapan

Personalised recommendations