Potential Application of Pollen Genotyping for Evolutionary Genetic and Genomic Studies: Linkage/Recombination Analysis and Haplotype Sequencing

  • Yayoi Takeuchi
  • Kentaro K. Shimizu
Part of the Ecological Research Monographs book series (ECOLOGICAL)


Single-pollen genotyping has mainly been used in ecological studies to date. Here, we discuss how this technique would also be valuable for evolutionary genetic and genomic studies. First, we briefly review previous genetic studies that have exploited haploid cells other than single pollen grains. Examples include the sperm genotyping of humans and livestock for recombination analysis and the linkage map of conifer trees using a multicellular haploid female megagametophyte. Single-pollen genotyping would allow similar analysis in angiosperms. We also discuss the advantages and disadvantages of two potential applications: linkage/recombination analysis and haplotype sequencing. These applications would provide more information about the genetic background of “nonmodel” organisms with little prior genomic information and a better understanding of evolutionary and ecological processes.


Amplify Fragment Length Polymorphism Segregation Distortion Single Pollen Haploid Cell Recombination Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P, Int HapMap C (2005) A haplotype map of the human genome. Nature (Lond) 437:1299–1320CrossRefGoogle Scholar
  2. Antunes A, Templeton AR, Guyomard R, Alexandrino P (2002) The role of nuclear genes in intraspecific evolutionary inference: genealogy of the transferrin gene in the brown trout. Mol Biol Evol 19:1272–1287PubMedGoogle Scholar
  3. Bahrman N, Damerval C (1989) Linkage relationships of loci controlling protein amounts in maritime pine (Pinus pinaster Ait). Heredity 63:267–274CrossRefGoogle Scholar
  4. Bartish IV, Kadereit JW, Comes HP (2006) Late Quaternary history of Hippophae rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Mol Ecol 15:4065–4083CrossRefPubMedGoogle Scholar
  5. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552CrossRefPubMedGoogle Scholar
  6. Bhojwani SS, Bhatnagar SP (1999) The embryology of angiosperms. Sangam Books, HyderabadGoogle Scholar
  7. Binelli G, Bucci G (1994) A genetic linkage map of Picea abies Karst, based on RAPD markers, as a tool in population genetics. Theor Appl Genet 88:283–288CrossRefGoogle Scholar
  8. Bradley RD, Hillis DM (1997) Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol 14:592–593PubMedGoogle Scholar
  9. Carrington M, Cullen M (2004) Justified chauvinism: advances in defining meiotic recombination through sperm typing. Trends Genet 20:196–205CrossRefPubMedGoogle Scholar
  10. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122PubMedGoogle Scholar
  11. Clark AG, Weiss KM, Nickerson DA, Taylor SL, Buchanan A, Stengard J, Salomaa V, Vartiainen E, Perola M, Boerwinkle E, Sing CF (1998) Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am J Hum Genet 63:595–612CrossRefPubMedGoogle Scholar
  12. Clark VJ, Ptak SE, Tiemann I, Qian YD, Coop G, Stone AC, Przeworski M, Arnheim N, Di Rienzo A (2007) Combining sperm typing and linkage disequilibrium analyses reveals differences in selective pressures or recombination rates across human populations. Genetics 175:795–804CrossRefPubMedGoogle Scholar
  13. Coop G, Wen XQ, Ober C, Pritchard JK, Przeworski M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395–1398CrossRefPubMedGoogle Scholar
  14. Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel JF (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104:482–489CrossRefPubMedGoogle Scholar
  15. Cui XF, Li HH, Goradia TM, Lange K, Kazazian HH, Galas D, Arnheim N (1989) Single-sperm typing: determination of genetic distance between the G gamma-globin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers. Proc Natl Acad Sci USA 86:9389–9393CrossRefPubMedGoogle Scholar
  16. Eronen L, Geerts F, Toivonen H (2006) HaploRec: efficient and accurate large-scale reconstruction of haplotypes. BMC Bioinform 7:542CrossRefGoogle Scholar
  17. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927PubMedGoogle Scholar
  18. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  19. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  20. Gurles RP, Freldman ST, Ledlg FT (1978) A megagametophyte analysis of genetic linkage in pitch pine (Pinus rigida Mill). Heredity 40:309–314CrossRefGoogle Scholar
  21. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19:1141–1152CrossRefPubMedGoogle Scholar
  22. Hartl DL, Clark AG (2006) Principles of population genetics. Sinauer, Sunderland, MAGoogle Scholar
  23. Hulbert S, Ilott T, Legg E, Lincoln S, Under E, Mlchelmore R (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958PubMedGoogle Scholar
  24. Ishiyama H, Inomata N, Yamazaki T, Shukor NAA, Szmidt AE (2008) Demographic history and interspecific hybridization of four Shorea species (Dipterocarpaceae) from Peninsular Malaysia inferred from nucleotide polymorphism in nuclear gene regions. Can J For Res 38:996–1007CrossRefGoogle Scholar
  25. Jeffreys AJ, May CA (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 36:427–427CrossRefGoogle Scholar
  26. Jeffreys AJ, Neumann R, Wilson V (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60:473–485CrossRefPubMedGoogle Scholar
  27. Jeffreys AJ, Tamaki K, Macleod A, Monckton DG, Neil DL, Armour JAL (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6:136–145CrossRefPubMedGoogle Scholar
  28. Jeffreys AJ, Neumann R, Panayi M, Myers S, Donnelly P (2005) Human recombination hot spots hidden in regions of strong marker association. Nat Genet 37:601–606CrossRefPubMedGoogle Scholar
  29. Kittler R, Stoneking M, Kayser M (2002) A whole genome amplification method to generate long fragments from low quantities of genomic DNA. Anal Biochem 300:237–244CrossRefPubMedGoogle Scholar
  30. Li HH, Gyllensten UB, Cui XF, Saiki RK, Erlich HA, Arnheim N (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature (Lond) 335:414–417CrossRefGoogle Scholar
  31. Lien S, Cockett NE, Klungland H, Arnheim N, Georges M, Gomez-Raya L (1999) High-resolution gametic map of the sheep callipyge region: linkage heterogeneity among rams detected by sperm typing. Anim Genet 30:42–46CrossRefPubMedGoogle Scholar
  32. Lihova J, Shimizu KK, Marhold K (2006) Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Mol Phylogenet Evol 39:759–786CrossRefPubMedGoogle Scholar
  33. Lin S, Cutler DJ, Zwick ME, Chakravarti A (2002) Haplotype inference in random population samples. Am J Hum Genet 71:1129–1137CrossRefPubMedGoogle Scholar
  34. Long JC, Williams RC, Urbanek M (1995) An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet 56:799–810PubMedGoogle Scholar
  35. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MAGoogle Scholar
  36. Matsuki Y, Isagi Y, Suyama Y (2007) The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Mol Ecol Notes 7:194–198CrossRefGoogle Scholar
  37. Nelson C, Nance W, Doudrlck R (1993) A partial genetic linkage map of slash pine (Pinus elliottii Engelm. var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet 87:145–151CrossRefGoogle Scholar
  38. Nelson CD, Kublslak TL, Stine M, Nance WL (1994) A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNAs. J Hered 85:433–439Google Scholar
  39. Niu TH (2004) Algorithms for inferring haplotypes. Genet Epidemiol 27:334–347CrossRefPubMedGoogle Scholar
  40. Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for multiple linked single nucleotide polymorphisms. Am J Hum Genet 70:157–169CrossRefPubMedGoogle Scholar
  41. Pekkinen M, Varvio S, Kulju KMM, Karkkainen H, Smolander S, Vihera-Aarnio A, Koski V, Sillanpaa M (2005) Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms. Genome 48:619–625CrossRefPubMedGoogle Scholar
  42. Pettersson M, Bylund M, Alderborn A (2003) Molecular haplotype determination using allele-specific PCR and pyrosequencing technology. Genomics 82:390–396CrossRefPubMedGoogle Scholar
  43. Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan-Wollaston V, Astley D, King G, Teakle G (2008) Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164:509–514CrossRefGoogle Scholar
  44. Qin ZHS, Niu TH, Liu JS (2002) Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet 71:1242–1247CrossRefPubMedGoogle Scholar
  45. Raeder U, Broda P (1986) Meiotic segregation analysis of restriction site polymorphisms allows rapid genetic mapping. EMBO J 5:1125–1127PubMedGoogle Scholar
  46. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefPubMedGoogle Scholar
  47. Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K, Savolainen O, Watanabe K, Yakubov VV, Shimizu KK (2009) The allopolyploid Arabidopsis kamchatica originated from multiple individuals of A. lyrata and A. halleri. Mol Ecol 18:4024–4048CrossRefPubMedGoogle Scholar
  48. Smirnova AS, Ferreira-Silva KC, Mine KL, Andrade-Oliveira V, Shulzhenko N, Gerbase-DeLima M, Morgun A (2007) A novel strategy for defining haplotypes by selective depletion using restriction enzymes. Immunogenetics 59:93–98CrossRefPubMedGoogle Scholar
  49. Snabes MC, Chong SS, Subramanian SB, Kristjansson K, Disepio D, Hughes MR (1994) Preimplantation single-cell analysis of multiple genetic loci by whole-genome amplification. Proc Natl Acad Sci USA 91:6181–6185CrossRefPubMedGoogle Scholar
  50. Stadler T, Arunyawat U, Stephan W (2008) Population genetics of speciation in two closely related wild tomatoes (Solanum section Lycopersicon). Genetics 178:339–350CrossRefPubMedGoogle Scholar
  51. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169CrossRefPubMedGoogle Scholar
  52. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedGoogle Scholar
  53. Suyama Y, Kawamuro K, Kinoshita I, Yoshimura K, Tsumura Y, Takahara H (1996) DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes Genet Syst 71:145–149CrossRefPubMedGoogle Scholar
  54. Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, Tsumura Y (2003) A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568PubMedGoogle Scholar
  55. Thomas A (2003) GCHap: fast MLEs for haplotype frequencies by gene counting. Bioinformatics 19:2002–2003CrossRefPubMedGoogle Scholar
  56. Thompson JR, Marcelino LA, Polz MF (2002) Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30:2083–2088CrossRefPubMedGoogle Scholar
  57. Travis SE, Ritland K, Whitham TG, Keim P (1998) A Genetic linkage map of pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms. Theor Appl Genet 97:871–880CrossRefGoogle Scholar
  58. Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Single tree genetic-linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology 10:686–690CrossRefPubMedGoogle Scholar
  59. Webb AJ, Berg IL, Jeffreys A (2008) Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association. Proc Natl Acad Sci USA 105:10471–10476CrossRefPubMedGoogle Scholar
  60. Woolbright SA, DiFazio SP, Yin T, Martinsen GD, Zhang X, Allan GJ, Whitham TG, Keim P (2007) A dense linkage map of hybrid cottonwood (Populus fremontii x P. angustifolia) contributes to long-term ecological research and comparison mapping in a model forest tree. Heredity 100:59–70CrossRefPubMedGoogle Scholar
  61. Zhang L, Cui XF, Schmitt K, Hubert R, Navidi W, Arnheim N (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 89:5847–5851CrossRefPubMedGoogle Scholar
  62. Zhang Y, Niu TH, Liu JS (2006) A coalescence-guided hierarchical Bayesian method for haplotype inference. Am J Hum Genet 79:313–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.School of Advanced Sciences, The Graduate University for Advanced StudiesKanagawaJapan
  2. 2.Evolutionary Functional Genomics, Institute of Plant BiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations