Skip to main content

Toward a Basis for the Phenotypic Gambit: Advances in the Evolutionary Genetics of Animal Personality

  • Chapter
From Genes to Animal Behavior

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Individuals of many species, including humans, differ consistently in the way they behave. These consistent behavioral differences among individuals are collectively known as animal personality (Gosling 2001), behavioral syndromes (Sih et al. 2004a), behavioral strategies (Benus et al. 1990), or behavioral profiles (Rodgers et al. 1997). Each of these terms, to some extent, describe an emergent phenomenon of the total biases in behavioral reactions an individual expresses compared to other individuals within the same population or species. In other words, animal personality, in addition to referring to consistent differences between individuals, also refers to correlated behaviors. These correlations (usually defined at the level of populations of individuals) can occur through time (an individual that is bold at one time is also bold at another), across different functional contexts (an individual that is bold toward a predator is also aggressive toward conspecifics), or some combination of time and context (juvenile exploratory behavior is related to adult sociability). Although there is some debate on terminology (e.g., Réale et al. 2007; Gosling 2008), we use the term “animal personality” throughout this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astles PA, Moore AJ, Preziosi RF (2006) A comparison of methods to estimate cross-environment genetic correlations. J Evol Biol 19:114–122

    Article  PubMed  CAS  Google Scholar 

  • Badyaev AV, Martin TE (2000) Individual variation in growth trajectories: phenotypic and genetic correlations in ontogeny of the house finch (Carpodacus mexicanus). J Evol Biol 13:290–301

    Article  Google Scholar 

  • Bakker TCM (1994) Genetic correlations and the control of behavior, exemplified by aggressiveness in sticklebacks. Adv Stud Behav 23:135–171

    Google Scholar 

  • Bateson P, Hofer M, Oppenheim R et al (2007) Developing a framework for development: a discussion. Dev Psychobiol 49:77–86

    Article  PubMed  Google Scholar 

  • Bell AM (2005) Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J Evol Biol 18:464–473

    Article  PubMed  CAS  Google Scholar 

  • Bell AM, Sih A (2007) Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett 10:828–834

    Article  PubMed  Google Scholar 

  • Benus RF, Bohus B, Koolhaas JM et al (1990) Behavioural strategies of aggressive and non-aggressive male mice in response to inescapable shock. Behav Process 21:127–141

    Article  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    Article  PubMed  Google Scholar 

  • Blanchet S, Paez DJ, Bernatchez L et al (2008) An integrated comparison of captive-bred and wild Atlantic salmon (Salmo salar): implications for supportive breeding programs. Biol Conserv 141:1989–1999

    Article  Google Scholar 

  • Blows MW, Hoffmann AA (2005) A reassessment of genetic limits to evolutionary change. Ecology 86:1371–1384

    Article  Google Scholar 

  • Boake CRB (1994) Quantitative genetic studies of behavioral evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Boake CRB, Arnold SJ, Breden F et al (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160:S143–S159

    Article  PubMed  Google Scholar 

  • Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Syst 40:103–125

    Article  Google Scholar 

  • Bouchard TJ Jr (1994) Genes, environment, and personality. Science 264:1700–1701

    Article  PubMed  Google Scholar 

  • Bouchard TJ Jr (2004) Genetic influence on human psychological traits: a survey. Curr Dir Psychol Sci 13:148–151

    Article  Google Scholar 

  • Bouchard TJ Jr, Loehlin JC (2001) Genes, evolution, and personality. Behav Genet 31:243–273

    Article  PubMed  Google Scholar 

  • Bulmer MG (1989) Maintenance of genetic-variability by mutation selection balance: a child’s guide through the jungle. Genome 31:761–767

    Article  Google Scholar 

  • Burrow HM (1997) Measurements of temperament and their relationships with performance traits of beef cattle. Anim Breed Abstr 65:477–495

    Google Scholar 

  • Buss DM, Greiling H (1999) Adaptive individual differences. J Pers 67:209–243

    Article  Google Scholar 

  • Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc Lond B Biol Sci 272:1415–1425

    Article  Google Scholar 

  • Coltman DW, O’Donoghue P, Hogg JT et al (2005) Selection and genetic (co)variance in bighorn sheep. Evolution 59:1372–1382

    PubMed  Google Scholar 

  • Colvin J, Gatehouse AG (1993) The reproduction-flight syndrome and the inheritance of tethered-flight activity in the cotton-bollworm moth, Heliothis armigera. Physiol Entomol 18:16–22

    Article  Google Scholar 

  • Daisley JN, Bromundt V, Mostl E et al (2005) Enhanced yolk testosterone influences behavioral phenotype independent of sex in Japanese quail chicks Coturnix japonica. Horm Behav 47:185–194

    Article  CAS  Google Scholar 

  • de Jong G (1990) Quantitative genetics of reaction norms. J Evol Biol 3:447–468

    Article  Google Scholar 

  • Dingemanse NJ, Réale D (2005) Natural selection and animal personality. Behaviour 142:1159–1184

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ et al (2002) Repeatability and heritability of exploratory behaviour in wild great tits. Anim Behav 64:929–937

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ et al (2004) Fitness consequences of avian personalities in a fluctuating environment. Proc R Soc Lond B Biol Sci 271:847–852

    Article  Google Scholar 

  • Dingemanse NJ, Wright J, Kazem AJM et al (2007) Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J Anim Ecol 76:1128–1138

    Article  PubMed  Google Scholar 

  • Dingemanse NJ, Van der Plas F, Wright J et al (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc Lond B Biol Sci 1660:1285–1293

    Article  Google Scholar 

  • Dingemanse NJ, Kazem AJN, Réale D et al (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81–98

    Article  PubMed  Google Scholar 

  • Dobzhansky T, Ayala FJ, Stebbins GL et al (1977) Evolution. W.H. Freeman and Co., San Francisco

    Google Scholar 

  • Drent PJ, van Oers K, van Noordwijk AJ (2003) Realized heritability of personalities in the great tit (Parus major). Proc R Soc Lond B Biol Sci 270:45–51

    Article  Google Scholar 

  • Duckworth RA (2006a) Aggressive behaviour affects selection on morphology by influencing settlement patterns in a passerine bird. Proc R Soc Lond B Biol Sci 273:1789–1795

    Article  Google Scholar 

  • Duckworth RA (2006b) Behavioral correlations across breeding contexts provide a mechanism for a cost of aggression. Behav Ecol 17:1011–1019

    Article  Google Scholar 

  • Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci USA 104:15017–15022

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks LA, Newman TK, Bailey JN et al (2004) Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biol Psychiatry 55:642–647

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • Gervai J, Csanyi V (1985) Behavior-genetic analysis of the paradise fish, Macropodus opercularis. I. Characterization of the behavioral-responses of inbred strains in novel environments: a factor analysis. Behav Genet 15:503–519

    Article  PubMed  CAS  Google Scholar 

  • Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86

    Article  PubMed  CAS  Google Scholar 

  • Gosling SD (2008) Personality in non-human animals. Soc Personal Psychol Compass 2:985–1001

    Article  Google Scholar 

  • Grafen A (1984) Natural selection, kin selection and group selection. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Gromko MH (1995) Unpredictability of correlated response to selection: pleiotropy and sampling interact. Evolution 49:685–693

    Article  Google Scholar 

  • Groothuis TGG, Carere C (2005) Avian personalities: characterization and epigenesis. Neurosci Biobehav Rev 29:137–150

    Article  PubMed  Google Scholar 

  • Groothuis TGG, Carere C, Lipar J et al (2008) Selection on personality in a songbird affects maternal hormone levels tuned to its effect on timing of reproduction. Biol Lett 4:465–467

    Article  PubMed  Google Scholar 

  • Han EN, Gatehouse AG (1993) Flight capacity: genetic determination and physiological constraints in a migratory moth Mythimna separata. Physiol Entomol 18:183–188

    Article  Google Scholar 

  • Higgins LA, Jones KM, Wayne ML (2005) Quantitative genetics of natural variation of behavior in Drosophila melanogaster: the possible role of the social environment on creating persistent patterns of group activity. Evolution 59:1529–1539

    PubMed  Google Scholar 

  • Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, New York

    Google Scholar 

  • Jablonka E, Lamb JR (1995) Epigenetic inheritance and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb JR (2006) Evolutionary epigenetics. In: Fox CW, Wolf JB (eds) Evolutionary genetics: concepts and case studies. Oxford University Press, Oxford

    Google Scholar 

  • Kimura M (1958) On the change of population fitness by natural selection. Heredity 12:145–167

    Article  Google Scholar 

  • Krebs JR, Davies NB (1978) Behavioural ecology: an evolutionary approach. Blackwell Science, Oxford

    Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B Biol Sci 359:873–890

    Article  PubMed  Google Scholar 

  • Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu Rev Ecol Evol Syst 39:525–548

    Article  Google Scholar 

  • Lande R (1982) A quantitative genetic theory of life-history evolution. Ecology 63:607–615

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • McCrae RR, Jang KL, Livesley WJ et al (2001) Sources of structure: genetic, environmental, and artifactual influences on the covariation of personality traits. J Pers 69:511–535

    Article  PubMed  CAS  Google Scholar 

  • Merilä J, Sheldon BC (1999) Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity 83:103–109

    Article  PubMed  Google Scholar 

  • Merilä J, Sheldon BC (2000) Lifetime reproductive success and heritability in nature. Am Nat 155:301–310

    Article  PubMed  Google Scholar 

  • Merilä J, Sheldon BC (2001) Avian quantitative genetics. In: Nolan V Jr (ed) Current ornithology, vol 16. Kluwer Academic, New York, pp 179–255

    Google Scholar 

  • Moretz JA, Martins EP, Robison BD (2007) Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol 18:556–562

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    Article  PubMed  CAS  Google Scholar 

  • Nettle D (2005) An evolutionary approach to the extraversion continuum. Evol Hum Behav 26:363–373

    Article  Google Scholar 

  • Nettle D (2006) The evolution of personality variation in humans and other animals. Am Psychol 61:622–631

    Article  PubMed  Google Scholar 

  • Owens IPF (2006) Where is behavioural ecology going? Trends Ecol Evol 21:356–361

    Article  PubMed  Google Scholar 

  • Penke L, Denissen JAA, Miller GF (2007) The evolutionary genetics of personality. Eur J Pers 21:549–587

    Article  Google Scholar 

  • Philipp DP, Cooke SJ, Claussen JE et al (2009) Selection for vulnerability to angling in largemouth bass. Trans Am Fish Soc 138:189–199

    Article  Google Scholar 

  • Price T, Langen TA (1992) Evolution of correlated characters. Trends Ecol Evol 7:307–310

    Article  PubMed  CAS  Google Scholar 

  • Pruitt JN, Riechert SE (2009) Sex matters: sexually dimorphic fitness consequences of a behavioural syndrome. Anim Behav 78:175–181

    Article  Google Scholar 

  • Quinn JL, Patrick SC, Bouwhuis S et al (2009) Heterogeneous selection on a heritable temperament trait in a variable environment. J Anim Ecol 78:1203–1215

    Article  PubMed  Google Scholar 

  • Réale D, Festa-Bianchet M, Jorgenson JT (1999) Heritability of body mass varies with age and season in wild bighorn sheep. Heredity 83:526–532

    Article  PubMed  Google Scholar 

  • Réale D, Gallant BY, Leblanc M et al (2000) Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597

    Article  PubMed  Google Scholar 

  • Réale D, Reader SM, Sol D et al (2007) Integrating temperament in ecology and evolutionary biology. Biol Rev 82:291–318

    Article  PubMed  Google Scholar 

  • Réale D, Martin J, Coltman DW et al (2009) Male personality, life-history strategies and reproductive success in a promiscuous mammal. J Evol Biol 22:1599–1607

    Article  PubMed  Google Scholar 

  • Riska B, Prout T, Turelli M (1989) Laboratory estimates of heritabilities and genetic correlations in nature. Genetics 123:865–871

    PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cao BA, Dalvi A et al (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30:289–304

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (1996) The evolution of genetic correlations: an analysis of patterns. Evolution 50:1392–1403

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447

    Article  PubMed  CAS  Google Scholar 

  • Savitz JB, Ramesar RS (2004) Genetic variants implicated in personality: a review of the more promising candidates. Am J Med Genet Neuropsychiatr Genet 131B:20–32

    Article  Google Scholar 

  • Sgro CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248

    Article  PubMed  CAS  Google Scholar 

  • Sih A, Bell AM, Johnson JC (2004a) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Sih A, Bell AM, Johnson JC et al (2004b) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277

    Article  PubMed  Google Scholar 

  • Sinervo B, Svensson E (2002) Correlational selection and the evolution of genomic architecture. Heredity 89:329–338

    Article  PubMed  CAS  Google Scholar 

  • Sinn DL, Apiolaza LA, Moltschaniwskyj NA (2006) Heritability and fitness-related consequences of squid personality traits. J Evol Biol 19:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Sinn DL, Moltschaniwskyj NA, Wapstra E, Dall SRX (2010) Are behavioral syndromes invariant? Spatiotemporal variation in shy/bold behavior in squid. Behav Ecol Sociobiol, 64:693–702

    Google Scholar 

  • Sluyter F, van Oortmerssen GA, De Ruiter AJH et al (1996) Aggression in wild house mice: current state of affairs. Behav Genet 26:489–496

    Article  PubMed  CAS  Google Scholar 

  • Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455

    Article  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2:879–890

    Article  PubMed  CAS  Google Scholar 

  • Stamps JA, Groothuis TGG (2010) Ontogeny of animal personality: relevance, concepts and perspectives. Biol Rev 85:301–325

    Google Scholar 

  • Stirling DG, Réale D, Roff DA (2002) Selection, structure and the heritability of behaviour. J Evol Biol 15:277–289

    Article  Google Scholar 

  • Tobler M, Sandell MI (2007) Yolk testosterone modulates persistence of neophobic responses in adult zebra finches, Taeniopygia guttata. Horm Behav 52:640–645

    Article  PubMed  CAS  Google Scholar 

  • Turkheimer E (1998) Heritability and biological explanation. Psychol Rev 105:782–791

    Article  PubMed  CAS  Google Scholar 

  • Uller T (2008) Developmental plasticity and the evolution of parental effects. Trends Ecol Evol 23:432–438

    Article  PubMed  Google Scholar 

  • Uller T, Olsson M, Stahlberg F (2002) Variation in heritability of tadpole growth: an experimental analysis. Heredity 88:480–484

    Article  PubMed  CAS  Google Scholar 

  • van Oers K, Sinn DL (2010) The quantitative and molecular genetics of animal personality. In: Carere C, Maestripieri D (eds) Animal personalities: behavior, physiology, and evolution. University of Chicago Press, Chicago

    Google Scholar 

  • van Oers K, Drent PJ, de Goede P et al (2004a) Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. Proc R Soc Lond B Biol Sci 271:65–73

    Article  Google Scholar 

  • van Oers K, de Jong G, Drent PJ et al (2004b) Genetic correlations of avian personality traits: correlated response to artificial selection. Behav Genet 34:611–619

    Article  PubMed  Google Scholar 

  • van Oers K, Drent PJ, de Jong G et al (2004c) Additive and nonadditive genetic variation in avian personality traits. Heredity 93:496–503

    Article  PubMed  Google Scholar 

  • van Oers K, de Jong G, van Noordwijk AJ et al (2005) Contribution of genetics to the studyof animal personalities: a review of case studies. Behaviour 142:1185–1206. doi:10.1163/156853905774539364

    Article  Google Scholar 

  • Wehner JM, Radcliffe RA, Bowers BJ (2001) Quantitative genetics and mouse behavior. Annu Rev Neurosci 24:845–867

    Article  PubMed  CAS  Google Scholar 

  • Weigensberg I, Roff DA (1996) Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50:2149–2157

    Article  Google Scholar 

  • Weiss A, King JE, Figueredo AJ (2000) The heritability of personality factors in chimpanzees (Pan troglodytes). Behav Genet 30:213–221

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Wilson DS (1998) Adaptive individual differences within single populations. Philos Trans R Soc Lond B Biol Sci 353:199–205

    Article  Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkington JG et al (2006) Environmental coupling of selection and heritability limits evolution. PLoS Biol 4:1270–1275

    Article  CAS  Google Scholar 

  • Wolf JB (2001) Integrating biotechnology and the behavioral sciences. Trends Ecol Evol 16:117–119

    Article  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O et al (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  PubMed  CAS  Google Scholar 

  • Wright D, Rimmer LB, Pritchard VL et al (2003) Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90:374–377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Alexander Weiss and Judy Stamps for helpful discussions on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees van Oers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

van Oers, K., Sinn, D.L. (2011). Toward a Basis for the Phenotypic Gambit: Advances in the Evolutionary Genetics of Animal Personality. In: Inoue-Murayama, M., Kawamura, S., Weiss, A. (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53892-9_7

Download citation

Publish with us

Policies and ethics