Skip to main content

Extra-Pair Paternity and Sexual Selection

  • Chapter
From Genes to Animal Behavior

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Parentage analyses can reveal hidden reproductive interactions between individuals that are not social partners. Extra-pair mating is a special case of promiscuity where social pair bonds exist and persist despite copulations with multiple partners by one or both pair members. The relevance of extra-pair interactions in reshaping social mating systems varies among species. In some species or populations, extra-pair matings are no more than exceptional events (e.g., Dearborn et al. 2001; Egger et al.2006), whereas in others extra-pair paternity (EPP) is a phenomenon that cannot be ignored when describing mating patterns because of a substantial discrepancy between the observable apparent mating system and the actually realized mating system (e.g., Double and Cockburn 2003; Sefc et al. 2008). Extra-pair copulations (EPCs) are of special interest in socially monogamous species where promiscuity is otherwise absent. Pair bonding and social monogamy are relatively rare – except in birds (Lack 1968, p. 148) – yet occur in a wide range of animal taxa (e.g., Caldwell 1997; Kvarnemo et al. 2000; Baeza 2008; Steinauer 2009). However, social monogamy frequently goes hand in hand with multiple mating (e.g., Griffith et al. 2002; Chapple 2003; Lodé and Lesbarrères 2004; Cohas and Allainé2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akçay E, Roughgarden J (2007) Extra-pair paternity in birds: review of the genetic benefits. Evol Ecol Res 9:855–868

    Google Scholar 

  • Albrecht T, Schnitzer J, Kreisinger J et al (2007) Extrapair paternity and the opportunity for sexual selection in long-distant migratory passerines. Behav Ecol 18:477–486

    Google Scholar 

  • Albrecht T, Vinkler M, Schnitzer J, Poláková R, Munclinger P, Bryja J (2009) Extra-pair fertilizations contribute to selection on secondary male ornamentation in a socially monogamous passerine. J Evol Biol 22:2020–2030

    PubMed  CAS  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Andersson M, Iwasa Y (1996) Sexual selection. Trends Ecol Evol 11:53–58

    PubMed  CAS  Google Scholar 

  • Arnold SJ (1994) Bateman’s principles and the measurement of sexual selection in plants and animals. Am Nat 144:s126–s149

    Google Scholar 

  • Arnold SJ, Duvall D (1994) Animal mating systems: a synthesis based on selection theory. Am Nat 143:317–348

    Google Scholar 

  • Arnold SJ, Wade MJ (1984) On the measurement of natural and sexual selection: theory. Evolution 38:709–719

    Google Scholar 

  • Arnqvist G, Kirkpatrick M (2005) The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behavior in females. Am Nat 165:26–37

    Google Scholar 

  • Arnqvist G, Kirkpatrick M (2007) The evolution of infidelity in socially monogamous passerines: a reply to Griffith. Am Nat 169:282–283

    Google Scholar 

  • Baeza JA (2008) Social monogamy in the shrimp Pontonia margarita, a symbiont of Pinctada mazatlantica, off the Pacific coast of Panama. Mar Biol 153:387–395

    Google Scholar 

  • Balenger SL, Johnson LS, Mays HL Jr et al (2009) Extra-pair paternity in the socially monogamous mountain bluebird Sialia currucoides and its effect on the potential for sexual selection. J Avian Biol 40:173–180

    Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    PubMed  CAS  Google Scholar 

  • Bennett P, Owens IP (2002) Evolutionary ecology of birds: life histories, mating systems, and extinction. Oxford University Press, Oxford

    Google Scholar 

  • Birkhead TR, Møller AP (1992) Sperm competition in birds. Academic, London

    Google Scholar 

  • Bjork A, Pitnick S (2006) Intensity of sexual selection along the anisogamy–isogamy continuum. Nature 441:742–745

    PubMed  CAS  Google Scholar 

  • Boonstra R, Gilbert BS, Krebs CJ (1993) Mating systems and sexual dimorphism in mass in microtines. J Mammal 74:224–229

    Google Scholar 

  • Brommer JE, Korsten P, Bouwman KM, Berg ML, Komdeur J (2007) Is extrapair mating random? On the probability distribution of extrapair young in avian broods. Behav Ecol 18:895–904

    Google Scholar 

  • Bryja J, Patzenhauerová H, Albrecht T et al (2008) Varying levels of female promiscuity in four Apodemus mice species. Behav Ecol Sociobiol 63:251–260

    Google Scholar 

  • Byers BE, Mays HL Jr, Stewart IR et al (2004) Extrapair paternity increases variability in male reproductive success in the chestnut-sided warbler (Dendroica pensylvanica), a socially monogamous songbird. Auk 121:788–795

    Google Scholar 

  • Caldwell JP (1997) Pair bonding in spotted poison frogs. Nature 385:211

    CAS  Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:575–595

    PubMed  Google Scholar 

  • Canty A, Ripley B (2009) Boot: bootstrap R (S-plus) functions. R package version 1. 2–38

    Google Scholar 

  • Cerchio S, Jacobsen JK, Cholewiak DM et al (2005) Paternity in humpback whales, Megaptera novaeangliae: assessing polygyny and skew in male reproductive success. Anim Behav 70:267–277

    Google Scholar 

  • Chapple DG (2003) Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol Monogr 17:145–180

    Google Scholar 

  • Cohas A, Allainé D (2009) Social structure influences extra-pair paternity in socially monogamous mammals. Biol Lett 5:313–316

    PubMed  Google Scholar 

  • Croshaw DA, Peters MB, Glenn TC (2009) Comparing the performance of analytical techniques for genetic parentage of half-sib progeny arrays. Gen Res 91:313–325

    CAS  Google Scholar 

  • Crow JF (1958) Some possibilities for measuring selection intensities in man. Hum Biol 30:1–13

    PubMed  CAS  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Dearborn DC, Anders AD, Parker PG (2001) Sexual dimorphism, extrapair fertilizations, and operational sex ratio in great frigatebirds (Fregata minor). Behav Ecol 12:746–752

    Google Scholar 

  • Delhey K, Johnsen A, Peters A et al (2003) Paternity analysis reveals opposing selection pressures on crown coloration in the blue tit (Parus caeruleus). Proc R Soc Lond B 270:2057–2063

    Google Scholar 

  • DeWoody JA, Fletcher DE, Wilkins SD et al (2000) Genetic monogamy and biparental care in an externally fertilizing fish, the largemouth bass (Micropterus salmoides). Proc R Soc Lond B 267:2431–2437

    CAS  Google Scholar 

  • Dolan AC, Murphy MT, Redmond LJ et al (2007) Extrapair paternity and the opportunity for sexual selection in a socially monogamous passerine. Behav Ecol 18:985–993

    Google Scholar 

  • Double MC, Cockburn A (2003) Subordinate superb fairy-wrens (Malurus cyaneus) parasitize the reproductive success of attractive dominant males. Proc R Soc Lond B 270:379–384

    Google Scholar 

  • Downhower JF, Blumer LS, Brown L (1987) Opportunity for selection: an appropriate measure for evaluating variation in the potential for selection? Evolution 41:1395–1400

    Google Scholar 

  • Dreiss AN, Silva N, Richard M et al (2008) Condition-dependent genetic benefits of extrapair fertilization in female blue tits Cyanistes caeruleus. J Evol Biol 21:1814–1822

    PubMed  CAS  Google Scholar 

  • Dunn PO, Whittingham LA, Pitcher TE (2001) Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55:161–175

    PubMed  CAS  Google Scholar 

  • Dunn PO, Lifjeld JT, Whittingham LA (2009) Multiple paternity and offspring quality in tree swallows. Behav Ecol Sociobiol 63:911–922

    Google Scholar 

  • Egger B, Obermüller B, Phiri H et al (2006) Monogamy in the maternally mouthbrooding Lake Tanganyika cichlid fish Tropheus moorii. Proc R Soc Lond B 273:1797–1802

    Google Scholar 

  • Eliassen S, Kokko H (2008) Current analyses do not resolve whether extra-pair paternity is male or female driven. Behav Ecol Sociobiol 62:1795–1804

    Google Scholar 

  • Eliot JS (2005) Birds of a different color. Madagascar’s paradise flycatchers. Nat Geogr 2005-4:56–61

    Google Scholar 

  • Fairbairn DJ, Wilby AE (2001) Inequality of opportunity: measuring the potential for sexual selection. Evol Ecol Res 3:667–686

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Forstmeier W (2007) Do individual females differ intrinsically in their propensity to engage in extra-pair copulations? PLoS One 2:e952

    PubMed  Google Scholar 

  • Fossøy F, Johnsen A, Lifjeld JT (2008) Multiple genetic benefits of female promiscuity in a socially monogamous passerine. Evolution 62:145–156

    PubMed  Google Scholar 

  • Freeman-Gallant CR, Wheelwright NT, Meiklejohn KE et al (2005) Little effect of extrapair paternity on the opportunity for sexual selection in savannah sparrows (Passerculus sandwichensis). Evolution 59:422–430

    PubMed  Google Scholar 

  • Freeman-Gallant CR, Taff CC, Morin DF et al (2009) Sexual selection, multiple male ornaments, and age- and condition-dependent signaling in the common yellowthroat. Evolution 64:1007–1017

    PubMed  Google Scholar 

  • Friedl TW, Klump GM (2005) Extrapair fertilizations in Red Bishops (Euplectes orix): do females follow conditional extrapair strategies? Auk 122:57–70

    Google Scholar 

  • Galimberti F, Fabiani A, Sanvito S (2002) Opportunity for selection in southern elephant seals (Mirounga leonina): the effect of spatial scale of analysis. J Zool 256:93–97

    Google Scholar 

  • Garamszegi LZ, Eens M, Hurtrez-Boussès S et al (2005) Testosterone, testes size, and mating success in birds: a comparative study. Horm Behav 47:389–409

    PubMed  CAS  Google Scholar 

  • Garvin JC, Abroe B, Pedersen MC et al (2006) Immune response of nestling warblers varies with extra-pair paternity and temperature. Mol Ecol 15:3833–3840

    PubMed  CAS  Google Scholar 

  • Gibbs HL, Weatherhead PJ, White BN et al (1990) Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers. Science 250:1394–1397

    PubMed  CAS  Google Scholar 

  • Gowaty PA (1996) Battles of the sexes and origins of monogamy. In: Black JM (ed) Partnerships in birds. Oxford University Press, Oxford, pp 21–52

    Google Scholar 

  • Gowaty PA, Hubbell SP (2005) Chance, time allocation, and the evolution of adaptively flexible sex role behavior. Integr Comp Biol 45:931–944

    PubMed  Google Scholar 

  • Griffith SC (2007) The evolution of infidelity in socially monogamous passerines: neglected ­components of direct and indirect selection. Am Nat 169:274–281

    PubMed  Google Scholar 

  • Griffith SC, Owens IP, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    PubMed  CAS  Google Scholar 

  • Hasselquist D, Sherman PW (2001) Social mating systems and extrapair fertilizations in passerine birds. Behav Ecol 12:457–466

    Google Scholar 

  • Hasselquist D, Bensch S, von Schantz T (1995) Low frequency of extrapair paternity in the polygynous great reed warbler, Acrocephalus arundinaceus. Behav Ecol 6:27–38

    Google Scholar 

  • Hasson O, Stone L (2009) Male infertility, female fertility and extrapair copulations. Biol Rev 84:225–244

    PubMed  Google Scholar 

  • Haydock J, Koenig WD (2003) Patterns of reproductive skew in the polygynandrous acorn woodpecker. Proc Nat Acad Sci USA 99:7178–7183

    Google Scholar 

  • Hereford J, Hansen TF, Houle D (2004) Comparing strengths of directional selection: how strong is strong? Evolution 58:2133–2143

    PubMed  Google Scholar 

  • Hubbell SP, Johnson LK (1987) Environmental variance in lifetime mating success, mate choice, and sexual selection. Am Nat 130:91–112

    Google Scholar 

  • Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62:1538–1543

    PubMed  Google Scholar 

  • Johnsen A, Lifjeld JT, Andersson S, Amundsen T (2001) Male characteristics and fertilisation success in bluethroats. Behaviour 138:1371–1390

    Google Scholar 

  • Jones AG (2001) Gerud 1.0: a computer program for the reconstruction of parental genotypes from progeny arrays using multilocus DNA data. Mol Ecol Notes 1:215–218

    CAS  Google Scholar 

  • Jones AG (2009) On the opportunity for sexual selection, the Bateman gradient and the maximum intensity of sexual selection. Evolution 63:1673–1684

    PubMed  Google Scholar 

  • Jones AG, Walker D, Kvarnemo C et al (2001) How cuckoldry can decrease the opportunity for sexual selection: data and theory from a genetic parentage analysis of the sand goby, Pomatoschistus minutus. Proc Nat Acad Sci USA 98:9151–9156

    PubMed  CAS  Google Scholar 

  • Jones AG, Arguello JR, Arnold SJ (2002) Validation of Bateman’s principles: a genetic study of sexual selection and mating patterns in the rough-skinned newt. Proc R Soc Lond B 269:2533–2539

    Google Scholar 

  • Jones AG, Arguello JR, Arnold SJ (2004) Molecular parentage analysis in experimental newt populations: the response of mating system measures to variation in the operational sex ratio. Am Nat 164:444–456

    PubMed  Google Scholar 

  • Jones AG, Rosenqvist G, Berglund A et al (2005) The measurement of sexual selection using Bateman’s principles: an experimental test in the sex-role-reversed pipefish Syngnathus typhle. Integr Comp Biol 45:874–884

    PubMed  Google Scholar 

  • Jukema J, Piersma T (2006) Permanent female mimics in a lekking shorebird. Biol Lett 2:161–164

    PubMed  Google Scholar 

  • Kawano KM, Yamaguchi N, Kasuya E et al (2009) Extra-pair mate choice in the female great tit Parus major: good males or compatible males. J Ethol 27:349–359

    Google Scholar 

  • Kempenaers B, Verheyen GR, van Den Broeck M, van Broeckhoven C, Dhondt AA, Burke T (1992) Extra-pair paternity results from female preference for high-quality males in the blue tit. Nature 357:494–496

    Google Scholar 

  • Kempenaers B, Everding S, Bishop C et al (2001) Extra-pair paternity and the reproductive role of male floaters in the tree swallow (Tachycineta bicolor). Behav Ecol Sociobiol 49:251–259

    Google Scholar 

  • Ketterson ED, Parker PG, Raouf SA et al (1997) The relative impact of extra-pair fertilizations on variation in male and female reproductive success in dark-eyed juncos (Junco hyemalis). Ornithol Monogr 49:81–101

    Google Scholar 

  • Kingma SA, Hall ML, Segelbacher G et al (2009) Radical loss of an extreme extra-pair mating system. BMC Ecol 9:15

    PubMed  Google Scholar 

  • Kleven O, Jacobsen F, Izadnegahdar R et al (2006) Male tail streamer length predicts fertilization success in the North American barn swallow (Hirundo rustica erythrogaster). Behav Ecol Sociobiol 59:412–418

    Google Scholar 

  • Kleven O, Laskemoen T, Fossøy F et al (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499

    PubMed  Google Scholar 

  • Kleven O, Fossøy F, Laskemoen T et al (2009) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63:2466–2473

    PubMed  Google Scholar 

  • Knolton N (1980) Sexual selection in two demes of a symbiotic, pair-bonding snapping shrimp. Evolution 34:161–173

    Google Scholar 

  • Kokita T, Mizota T (2002) Male secondary sexual traits are hydrodynamic devices for enhancing swimming performance in a monogamous filefish Paramonacanthus japonicus. J Ethol 20:35–42

    Google Scholar 

  • Kokko H, Mackenzie A, Reynolds JD et al (1999) Measures of inequality are not equal. Am Nat 154:358–382

    PubMed  Google Scholar 

  • Kraaijeveld K, Carew PJ, Billing T et al (2004) Extra-pair paternity does not result in differential sexual selection in the mutually ornamented black swan (Cygnus atratus). Mol Ecol 13:1625–1633

    PubMed  CAS  Google Scholar 

  • Kvarnemo C, Moore GI, Jones AG et al (2000) Monogamous pair bonds and mate switching in the western Australian seahorse Hippocampus subelongatus. J Evol Biol 13:882–888

    Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Google Scholar 

  • Lank DB, McRae S (2008) Crossdresser mating behaviour and preliminary genetic inheritance of permanent female mimic male ruffs, Philomachus pugnax. In: Oral presentation of abstracts of the 12th biennial congress of the International Society for Behavioral Ecology, Cornell, 9–15 August 2008. International Society for Behavioral Ecology, Ithaca, NY, p 69

    Google Scholar 

  • Lank DB, Smith CM, Hanotte O et al (1995) Genetic polymorphism for alternative mating behaviour in lekking male ruff Philomachus pugnax. Nature 378:59–62

    CAS  Google Scholar 

  • Lawler RR (2007) Fitness and extra-group reproduction in male Verreauxs sifaka: an analysis of reproductive success from 1989–1999. Am J Phys Anthropol 132:267–277

    PubMed  Google Scholar 

  • Lawler RR (2009) Monomorphism, male–male competition, and mechanisms of sexual dimorphism. J Hum Evol 57:321–325

    PubMed  Google Scholar 

  • Lawler RR, Richard AF, Riley MA (2003) Genetic population structure of the white sifaka (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar (1992–2001). Mol Ecol 12:2307–2317

    PubMed  Google Scholar 

  • Leutenegger W, Lubach G (1987) Sexual dimorphism, mating system, and effect of phylogeny in De Brazza’s monkey (Cercopithecus neglectus). Am J Primatol 13:171–179

    Google Scholar 

  • Lodé T, Lesbarrères D (2004) Multiple paternity in Rana dalmatina, a monogamous territorial breeding anuran. Naturwissenschaften 91:44–47

    PubMed  Google Scholar 

  • Lüpold S, Linz GM, Rivers JW et al (2009) Sperm competition selects beyond relative testes size in birds. Evolution 63:391–402

    PubMed  Google Scholar 

  • McLain DK (1986) Null models and the intensity of sexual selection. Evol Theory 8:49–51

    Google Scholar 

  • McRae S, Farrell LL, Lank DB (2008) Exposing crossdressers: breeding female mimics of the ruff sandpiper. In: Poster presentation abstracts of the 12th biennial congress of the International Society for Behavioral Ecology, Cornell, 9–15 August 2008. International Society for Behavioral Ecology, Ithaca, NY, p 232

    Google Scholar 

  • Mills SC, Grapputo A, Koskela E et al (2007) Quantitative measure of sexual selection with respect to the operational sex ratio: a comparison of selection indices. Proc R Soc Lond B 274:143–150

    CAS  Google Scholar 

  • Mizuta T (2005) Parental care behavior in the monogamous, sexually dimorphic Madagascar paradise flycatcher: sex differences and the effect of brood size. Ecol Res 20:547–553

    Google Scholar 

  • Møller AP (1986) Mating systems among European passerines: a review. Ibis 128:234–250

    Google Scholar 

  • Møller AP, Birkhead TR (1994) The evolution of plumage brightness in birds is related to extrapair paternity. Evolution 48:1089–1100

    Google Scholar 

  • Møller AP, Briskie JV (1995) Extra-pair paternity, sperm competition and the evolution of testis size in birds. Behav Ecol Sociobiol 36:357–365

    Google Scholar 

  • Møller AP, Ninni P (1998) Sperm competition and sexual selection: a meta-analysis of paternity studies of birds. Behav Ecol Sociobiol 43:345–358

    Google Scholar 

  • Møller AP, Tegelström H (1997) Extra-pair paternity and tail ornamentation in the barn swallow Hirundo rustica. Behav Ecol Sociobiol 41:353–360

    Google Scholar 

  • Neff BD, Pitcher TE (2005) Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol 14:19–38

    PubMed  CAS  Google Scholar 

  • Neuman CR, Safran RJ, Lovette IJ (2007) Male tail streamer length does not predict apparent or genetic reproductive success in North American barn swallows Hirundo rustica erythrogaster. J Avian Biol 38:28–36

    Google Scholar 

  • Nonacs P (2003) Measuring the reliability of skew indices: is there one best index? Anim Behav 65:615–627

    Google Scholar 

  • O’Brien EL, Dawson RD (2007) Context-dependent genetic benefits of extra-pair mate choice in a socially monogamous passerine. Behav Ecol Sociobiol 61:775–782

    Google Scholar 

  • O’Connor KD, Marr AB, Arcese P et al (2006) Extra-pair fertilization and effective population size in the song sparrow Melospiza melodia. J Avian Biol 37:572–578

    Google Scholar 

  • O’Donald P (1970) Change of fitness by selection for a quantitative character. Theor Popul Biol 1:219–232

    PubMed  Google Scholar 

  • Otter K, Ratcliffe L, Michaud D, Boag PT (1998) Do female black-capped chickadees prefer high-ranking males as extra-pair partners? Behav Ecol Sociobiol 43:25–36

    Google Scholar 

  • Owens IP, Hartley IR (1998) Sexual dimorphism in birds: why are there so many different forms of dimorphism? Proc R Soc Lond B 265:397–407

    Google Scholar 

  • Parker PG, Tang-Martinez Z (2005) Bateman gradients in field and laboratory studies: a cautionary tale. Integr Comp Biol 45:895–902

    PubMed  Google Scholar 

  • Price T, Kirkpatrick M, Arnold SJ (1988) Directional selection and the evolution of breeding date in birds. Science 240:798–799

    PubMed  CAS  Google Scholar 

  • Ramm SA, Parker GA, Stockley P (2005) Sperm competition and the evolution of male reproductive anatomy in rodents. Proc R Soc Lond B 272:949–955

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Richardson DS, Burke T (2001) Extrapair paternity and variance in reproductive success related to breeding density in Bullock’s orioles. Anim Behav 62:519–525

    Google Scholar 

  • Runcie MJ (2000) Biparental care and obligate monogamy in the rock-haunting possum, Petropseudes dahli, from tropical Australia. Anim Behav 59:1001–1008

    PubMed  Google Scholar 

  • Ruzzante DE, Hamilton DC, Kramer DL et al (1996) Scaling of the variance and the quantification of resource monopolization. Behav Ecol 7:199–207

    Google Scholar 

  • Schmoll T, Dietrich V, Winkel W et al (2005) Paternal genetic effects on offspring fitness are context dependent within the extrapair mating system of a socially monogamous passerine. Evolution 59:645–657

    PubMed  Google Scholar 

  • Schülke O, Kappeler PM, Zischler H (2004) Small testes size despite high extra-pair paternity in the pair-living nocturnal primate Phaner furcifer. Behav Ecol Sociobiol 55:293–301

    Google Scholar 

  • Sefc KM, Mattersdorfer K, Sturmbauer C et al (2008) High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Mol Ecol 17:2531–2543

    PubMed  CAS  Google Scholar 

  • Sheldon BC (1994) Male phenotype, fertility, and the pursuit of extra-pair copulations by female birds. Proc R Soc Lond B 257:25–30

    Google Scholar 

  • Sheldon BC (2002) Relating paternity to paternal care. Proc R Soc Lond B 357:341–350

    Google Scholar 

  • Sheldon BC, Ellegren H (1999) Sexual selection resulting from extrapair paternity in collared flycatchers. Anim Behav 57:285–298

    PubMed  Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

    Google Scholar 

  • Steinauer ML (2009) The sex lives of parasites: investigating the mating system and mechanisms of sexual selection of the human pathogen Schistosoma mansoni. Int J Parasitol 39:1157–1163

    PubMed  Google Scholar 

  • Stutchbury BJ, Piper WH, Neudorf DL et al (1997) Correlates of extra-pair fertilization success in hooded warblers. Behav Ecol Sociobiol 40:119–126

    Google Scholar 

  • Sutherland WJ (1985a) Chance can produce a sex difference in variance in mating success and explain Bateman’s data. Anim Behav 33:1349–1252

    Google Scholar 

  • Sutherland WJ (1985b) Measures of sexual selection. Oxf Surv Evol Biol 1:90–101

    Google Scholar 

  • Tallamy DW (2009) Insect parental care. Bioscience 34:20–24

    Google Scholar 

  • Townsend AK, Clark AB, McGowan KJ (2010) Direct benefits and genetic costs of extrapair paternity for female American crows (Corvus brachyrhynchos). Am Nat 175:E1–E9. doi:10.1086/648553

    PubMed  Google Scholar 

  • Uller T, Olsson M (2008) Multiple paternity in reptiles: patterns and processes. Mol Ecol 17:2566–2580

    PubMed  Google Scholar 

  • van Oers K, Drent PJ, Dingemanse NJ et al (2008) Personality is associated with extrapair paternity in great tits, Parus major. Anim Behav 76:555–563

    Google Scholar 

  • Wade MJ (1979) Sexual selection and variance in reproductive success. Am Nat 114:742

    Google Scholar 

  • Wade MJ (1995) The ecology of sexual selection: mean crowding of females and resource-defence polygyny. Evol Ecol 9:118–124

    Google Scholar 

  • Wade MJ, Arnold SJ (1980) The intensity of sexual selection in relation to male sexual behaviour, female choice, and sperm precedence. Anim Behav 28:446–461

    Google Scholar 

  • Wagner RH, Schug MD, Morton ES (1996) Condition-dependent control of paternity by female purple martins: implications for coloniality. Behav Ecol Sociobiol 38:379–389

    Google Scholar 

  • Walsh B, Lynch M (2008) Individual fitness and the measurement of univariate selection. In: Quantitative genetics, vol 2. Evolution and selection of quantitative traits, pp 301–340. http://nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html. Accessed 7 November 2009

  • Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    PubMed  Google Scholar 

  • Weatherhead PJ, Boag PT (1997) Genetic estimates of annual and lifetime reproductive success in male red-winged blackbirds. Ecology 78:884–896

    Google Scholar 

  • Webster MS, Pruett-Jones S, Westneat DF et al (1995) Measuring the effects of pairing success, extra-pair copulations and mate quality on the opportunity for sexual selection. Evolution 49:1147–1157

    Google Scholar 

  • Webster MS, Chuang-Dobbs HC, Holmes RT (2001) Microsatellite identification of extrapair sires in a socially monogamous warbler. Behav Ecol 12:439–446

    Google Scholar 

  • Webster MS, Tarvin KA, Tuttle EM et al (2004) Reproductive promiscuity in the splendid fairy-wren: effects of group size and auxiliary reproduction. Behav Ecol 15:907–915

    Google Scholar 

  • Webster MS, Tarvin KA, Tuttle EM et al (2007) Promiscuity drives sexual selection in a socially monogamous bird. Evolution 61:2205–2211

    PubMed  Google Scholar 

  • Westneat DF (1993) Polygyny and extrapair fertilizations in eastern red-winged blackbirds (Agelaius phoeniceus). Behav Ecol 4:49–60

    Google Scholar 

  • Westneat DF (2006) No evidence of current sexuals selection on sexually dimorphic traits in a bird with high variance in mating success. Am Nat 167:e171–e189

    PubMed  Google Scholar 

  • Westneat DF, Stewart IR (2003) Extra-pair paternity in birds: causes, correlates, and conflict. Annu Rev Ecol Evol Syst 34:365–396

    Google Scholar 

  • Westneat DF, Sherman PW, Morton ML (1990) The ecology and evolution of extra-pair copulations in birds. Curr Ornithol 7:331–369

    Google Scholar 

  • Whittingham LA, Dunn PO (2001) Male parental care and paternity in birds. Curr Ornithol 16:257–298

    Google Scholar 

  • Whittingham LA, Dunn PO (2005) Effects of extra-pair and within-pair reproductive success on the opportunity for selection in birds. Behav Ecol 16:138–144

    Google Scholar 

  • Whittingham LA, Lifjeld JT (1995) Extra-pair fertilizations increase the opportunity for sexual selection in the monogamous house martin Delichon urbica. J Avian Biol 26:283–288

    Google Scholar 

  • Wright J (1998) Paternity and paternal care. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic, London, pp 117–145

    Google Scholar 

  • Wright ML, Swinstrom K, Caldwell RL (2009) A phylogenetic examination of social monogamy in stomatopod crustaceans. Integr Comp Biol 49:e328

    Google Scholar 

  • Yezerinac SM, Weatherhead PJ, Boag PT (1995) Extra-pair paternity and the opportunity for sexual selection in a socially monogamous bird (Dendroica petechia). Behav Ecol Sociobiol 37:179–188

    Google Scholar 

Download references

Acknowledgments

We are grateful to Robert Schlicht for extensive help with mathematical issues and to James Dale, Kaspar Delhey, and Wolfgang Forstmeier for valuable comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmi Schlicht .

Editor information

Editors and Affiliations

1 Appendix

References for Tables 1 and 2: 1, Hasselquist et al. (1995); 2, Gibbs et al. (1990); 3, Westneat (1993), fitness components calculated by Webster et al. (1995); 4, Weatherhead and Boag (1997); 5, Albrecht et al. (2007); 6, Kempenaers et al. (1992); 7, Delhey et al. (2003); 8, Whittingham and Lifjeld (1995), fitness components calculated by Whittingham and Dunn (2005); 9, Webster et al. (2001); 10, Byers et al. (2004); 11, Yezerinac et al. (1995), “lower bound estimate”; 12, Sheldon and Ellegren (1999); 13, Whittingham and Dunn (2005); 14, Kleven et al. (2006); 15, Møller and Tegelström (1997) and Møller and Ninni (1998); 16, Richardson and Burke (2001); 17, Ketterson et al. (1997); 18, Johnsen et al. (2001); 19, Webster et al. (2004, 2007); 20, O’Connor et al. (2006), averaged over years; 21, Freeman-Gallant et al. (2005); 22, Otter et al. (1998) and Whittingham and Dunn (2005); 23, Wagner et al. (1996) and Møller and Ninni (1998); 24, Balenger et al. (2009); 25, Kempenaers et al. (2001), among residents; 26, Whittingham and Dunn (2005); 27, Dolan et al. (2007); 28, Stutchbury et al. (1997); 29, Westneat (2006); 30, Freeman-Gallant et al. (2009); 31, Lawler (2007) and Lawler et al. (2003).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Schlicht, E., Kempenaers, B. (2011). Extra-Pair Paternity and Sexual Selection. In: Inoue-Murayama, M., Kawamura, S., Weiss, A. (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53892-9_2

Download citation

Publish with us

Policies and ethics