Skip to main content

Personality-Associated Genetic Variation in Birds and Its Possible Significance for Avian Evolution, Conservation, and Welfare

  • Chapter
From Genes to Animal Behavior

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

As free-living birds are relatively visible to human observers, bird behavioral studies have contributed greatly to ethology and behavioral ecology. Combining avian behavioral and molecular genetic studies might be expected to yield insights into both underlying neuroendocrine mechanisms and evolutionary processes associated with bird personalities. Associations between mammalian dopamine receptor D4 (DRD4) gene polymorphisms and varying levels of novelty-seeking behavior have been reported. In a search for DRD4 polymorphism – novelty-seeking associations in a bird species (great tit, Parus major) – a synonymous single nucleotide polymorphism (SNP) denoted SNP830 showed evidence of association with novelty-seeking behavior variation in both lines selected for divergent levels of early exploratory behavior (EEB) and unselected birds taken from a wild population. In addition, the phenotypic effect of SNP830 genotype may be influenced by a 15 bp indel polymorphism located 5′ to the DRD4 putative transcription initiation site. Remarkably, DRD4 genotype–behavior associations may predate the divergence of the avian and mammalian lineages. Identification of personality-associated genetic polymorphisms may assist the selective breeding of poultry for improved welfare, and preservation of personality-associated genetic diversity may prove important in avian conservation genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol 21:433–438

    PubMed  Google Scholar 

  • Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci USA 106:9987–9994

    PubMed  CAS  Google Scholar 

  • Anholt RRH, Mackay TFC (2004) Quantitative genetic analyses of complex behaviours in Drosophila. Nat Rev Genet 5:838–849

    PubMed  CAS  Google Scholar 

  • Anisimova M, Liberles DA (2007) The quest for natural selection in the age of comparative genomics. Heredity 99:567–579

    PubMed  CAS  Google Scholar 

  • Auersperg AM, Gajdon GK, Huber L (2009) Kea (Nestor notabilis) consider spatial relationships between objects in the support problem. Biol Lett 5:455–458

    PubMed  Google Scholar 

  • Backström N, Ovarnstrom A, Gustafsson L et al (2006) Levels of linkage disequilibrium in a wild bird population. Biol Lett 2:435–438

    PubMed  Google Scholar 

  • Backström N, Fagerberg S, Ellegren H (2008a) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980

    PubMed  Google Scholar 

  • Backström N, Karaiskou N, Leder EH et al (2008b) A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics 179:1479–1495

    PubMed  Google Scholar 

  • Bailey JN, Breidenthal SE, Jorgensen MJ et al (2007) The association of DRD4 and novelty seeking is found in a nonhuman primate model. Psychiatr Genet 17:23–27

    PubMed  Google Scholar 

  • Bell AM (2007) Future directions in behavioural syndromes research. Proc Biol Sci 274:755–761

    PubMed  Google Scholar 

  • Bennett PM, Owens IPF (2002) Evolutionary ecology of birds: life history, mating system and extinction. Oxford University Press, Oxford

    Google Scholar 

  • Biro PA, Dingemanse NJ (2009) Sampling bias resulting from animal personality. Trends Ecol Evol 24:66–67

    PubMed  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    PubMed  Google Scholar 

  • Bonneaud C, Burnside J, Edwards SV (2008) High-speed developments in avian genomics. Bioscience 58:587–595

    Google Scholar 

  • Both C, Dingemanse NJ, Drent PJ et al (2005) Pairs of extreme avian personalities have highest reproductive success. J Anim Ecol 74:667–674

    Google Scholar 

  • Buitenhuis AJ, Rodenburg TB, Siwek M et al (2005) Quantitative trait loci for behavioural traits in chickens. Livest Prod Sci 93:95–103

    Google Scholar 

  • Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7:98–108

    PubMed  CAS  Google Scholar 

  • Charmantier A, McCleery RH, Cole LR et al (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    PubMed  CAS  Google Scholar 

  • Cogburn LA, Porter TE, Duclos MJ et al (2007) Functional genomics of the chicken – a model organism. Poultry Sci 86:2059–2094

    CAS  Google Scholar 

  • Cote J, Dreiss A, Clobert J (2008) Social personality trait and fitness. Proc Biol Sci 275:2851–2858

    PubMed  CAS  Google Scholar 

  • Dall SRX, Houston AI, McNamara JM (2004) The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett 7:734–739

    Google Scholar 

  • Dalziel AC, Rogers SM, Schulte PM (2009) Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol Ecol 18:4997–5017

    PubMed  CAS  Google Scholar 

  • Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8:675–688

    PubMed  CAS  Google Scholar 

  • Diamond J, Bond AB (1999) Kea, bird of paradox: the evolution and behavior of a New Zealand parrot. University of California Press, Berkeley

    Google Scholar 

  • Dingemanse NJ, Réale D (2005) Natural selection and animal personality. Behaviour 142:1159–1184

    Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ et al (2004) Fitness consequences of avian personalities in a fluctuating environment. Proc Biol Sci 271:847–852

    PubMed  Google Scholar 

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904

    PubMed  CAS  Google Scholar 

  • Drent PJ, van Oers K, van Noordwijk AJ (2003) Realized heritability of personalities in the great tit (Parus major). Proc Biol Sci 270:45–51

    PubMed  Google Scholar 

  • Ebstein RP (2006) The molecular genetic architecture of human personality: beyond self-report questionnaires. Mol Psychiatry 11:427–445

    PubMed  CAS  Google Scholar 

  • Ellegren H (2008a) Sequencing goes 454 and takes large-scale genomics into the wild. Mol Ecol 17:1629–1631

    PubMed  CAS  Google Scholar 

  • Ellegren H (2008b) Comparative genomics and the study of evolution by natural selection. Mol Ecol 17:4586–4596

    PubMed  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    PubMed  CAS  Google Scholar 

  • Ellenberg U, Mattern T, Seddon PJ (2009) Habituation potential of yellow-eyed penguins depends on sex, character and previous experience with humans. Anim Behav 77:289–296

    Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    PubMed  CAS  Google Scholar 

  • Eriksson J, Larson G, Gunnarsson U et al (2008) Identification of the Yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet 4:e1000010

    PubMed  Google Scholar 

  • Fidler AE, van Oers K, Drent PJ et al (2007) Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc Biol Sci 274:1685–1691

    PubMed  CAS  Google Scholar 

  • Fitzpatrick MJ, Ben-Shahar Y, Smid HM et al (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104

    PubMed  Google Scholar 

  • Fitzpatrick MJ, Feder E, Rowe L et al (2008) Maintaining a behaviour polymorphism by ­frequency-dependent selection on a single gene. Nature 447:210–212

    Google Scholar 

  • Flint APF, Woolliams JA (2008) Precision animal breeding. Philos Trans R Soc Lond B Biol Sci 363:573–590

    PubMed  CAS  Google Scholar 

  • Flisikowski K, Schwarzenbacher H, Wysocki M et al (2009) Variation in neighbouring genes of the dopaminergic and serotonergic systems affects feather pecking behaviour of laying hens. Anim Genet 40:192–199

    PubMed  CAS  Google Scholar 

  • Forstmeier W, Segelbacher G, Mueller JC et al (2007) Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata). Mol Ecol 16:4039–4050

    PubMed  CAS  Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    PubMed  Google Scholar 

  • Garamszegi LZ, Eens M, Janos T (2009) Behavioural syndromes and trappability in free-living collared flycatchers, Ficedula albicollis. Anim Behav 77:803–812

    Google Scholar 

  • Gibbs JR, Singleton A (2006) Application of genome-wide single nucleotide polymorphism typing: simple association and beyond. PLoS Genet 2:1511–1517

    CAS  Google Scholar 

  • Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86

    PubMed  CAS  Google Scholar 

  • Goymer P (2007) Synonymous mutations break their silence. Nat Rev Genet 8:92

    CAS  Google Scholar 

  • Gratten J, Wilson AJ, McRae AF et al (2008) A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319:318–320

    PubMed  CAS  Google Scholar 

  • Groothuis TGG, Carere C (2005) Avian personalities: characterization and epigenesis. Neurosci Biobehav Rev 29:137–150

    PubMed  Google Scholar 

  • Hakansson J, Jensen P (2005) Behavioural and morphological variation between captive populations of red junglefowl (Gallus gallus) – possible implications for conservation. Biol Conserv 122:431–439

    Google Scholar 

  • Hakansson J, Jensen P (2008) A longitudinal study of antipredator behaviour in four successive generations of two populations of captive red junglefowl. Appl Anim Behav Sci 114:409–418

    Google Scholar 

  • Hakansson J, Bratt C, Jensen P (2007) Behavioural differences between two captive populations of red jungle fowl (Gallus gallus) with different genetic background, raised under identical conditions. Appl Anim Behav Sci 102:24–38

    Google Scholar 

  • Hillier LW, Miller W, Birney E et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    CAS  Google Scholar 

  • Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:222–234

    PubMed  CAS  Google Scholar 

  • Houck LD, Drickamer LC (1996) Foundations of animal behaviour. University of Chicago Press, Chicago

    Google Scholar 

  • Huber L, Gajdon GK (2006) Technical intelligence in animals: the kea model. Anim Cogn 9:295–305

    PubMed  Google Scholar 

  • Hurst LD (2009) Fundamental concepts in genetics. Genetics and the understanding of selection. Nat Rev Genet 10:83–93

    PubMed  CAS  Google Scholar 

  • Inoue-Murayama M (2009) Genetic polymorphism as a background of animal behaviour. Anim Sci J 80:113–120

    PubMed  CAS  Google Scholar 

  • Jensen P, Andersson L (2005) Genomics meets ethology: a new route to understanding domestication behavior, and sustainability in animal breeding. Ambio 34:320–324

    PubMed  Google Scholar 

  • Jensen P, Buitenhuis B, Kjaer J et al (2008) Genetics and genomics of animal behaviour and welfare-challenges and possibilities. Appl Anim Behav Sci 113:383–403

    Google Scholar 

  • Kahvejian A, Quackenbush J, Thompson JF (2008) What would you do if you could sequence everything? Nat Biotechnol 26:1125–1133

    PubMed  CAS  Google Scholar 

  • Kanginakudru S, Metta M, Jakati RD et al (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evol Biol 8: art no 174

    Google Scholar 

  • Keeling L, Anderson L, Schutz KE et al (2004) Chicken genomics: feather-pecking and victim pigmentation. Nature 431:645–646

    PubMed  CAS  Google Scholar 

  • Keller MC (2008) The evolutionary persistence of genes that increase mental disorders risk. Curr Dir Psychol Sci 17:395–399

    Google Scholar 

  • Kiontke K (2008) Evolutionary biology: patchy food may maintain a foraging polymorphism. Current Biol 18:R1017–R1019

    CAS  Google Scholar 

  • Kluger AN, Siegfried Z, Ebstein RP (2002) A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Mol Psychiatry 7:712–717

    PubMed  CAS  Google Scholar 

  • Kohn MH, Murphy WJ, Ostrander EA et al (2006) Genomics and conservation genetics. Trends Ecol Evol 21:629–637

    PubMed  Google Scholar 

  • Komar AA (2007) Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8:1075–1080

    PubMed  CAS  Google Scholar 

  • Konishi M, Emlen ST, Ricklefs RE et al (1989) Contributions of bird studies to biology. Science 246:465–472

    PubMed  CAS  Google Scholar 

  • Korsten P, Mueller JC, Hermannstädter C et al (2010) Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Mol Ecol 19:832–843

    Google Scholar 

  • Krieger MJB (2005) To b or not to b: a pheromone-binding protein regulates colony social organization in fire ants. Bioessays 27:91–99

    PubMed  CAS  Google Scholar 

  • Kruglyak L (2008) The road to genome-wide association studies. Nat Rev Genet 9:314–318

    PubMed  CAS  Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Li MH, Merilä J (2010) Extensive linkage disequilibrium in a wild bird population. Heredity 104:600–610

    Google Scholar 

  • Li YF, Costello JC, Holloway AK et al (2008) “Reverse ecology” and the power of population genomics. Evolution 62:2984–2994

    PubMed  Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    PubMed  CAS  Google Scholar 

  • Martin JGA, Réale D (2008) Animal temperament and human disturbance: implications for the response of wildlife to tourism. Behav Processes 77:66–72

    PubMed  CAS  Google Scholar 

  • McDougall PT, Réale D, Sol D et al (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim Conserv 9:39–48

    Google Scholar 

  • McNamara JM, Stephens PA, Dall SRX et al (2009) Evolution of trust and trustworthiness: social awareness favours personality differences. Proc Biol Sci 276:605–613

    PubMed  Google Scholar 

  • Momozawa Y, Takeuchi Y, Kusunose R et al (2005) Association between equine temperament and polymorphisms in dopamine D4 receptor gene. Mamm Genome 16:538–544

    PubMed  CAS  Google Scholar 

  • Mormede P (2005) Molecular genetics of behaviour: research strategies and perspectives for animal production. Livest Prod Sci 93:15–21

    Google Scholar 

  • Munafò MR, Clark TG, Flint J (2004) Assessing publication bias in genetic association studies: evidence from a recent meta-analysis. Psychiatry Res 129:39–44

    PubMed  Google Scholar 

  • Munafò MR, Yalcin B, Willis-Owen SA et al (2008) Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 63:197–206

    PubMed  Google Scholar 

  • Mundy NI (2005) A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc Biol Sci 272:1633–1640

    PubMed  CAS  Google Scholar 

  • Nair HP, Young LJ (2006) Vasopressin and pair-bond formation: genes to brain to behaviour. Physiology 21:146–152

    PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6:119–127

    PubMed  CAS  Google Scholar 

  • Orr HA (2009) Fitness and its role in evolutionary genetics. Nat Rev Genet 10:531–539

    PubMed  CAS  Google Scholar 

  • Paul DB, Spencer HG (1995) The hidden science of eugenics. Nature 374:302–304

    PubMed  CAS  Google Scholar 

  • Pawlak CR, Ho YJ, Schwarting RKW (2008) Animal models of human psychopathology based on individual differences in novelty-seeking and anxiety. Neurosci Biobehav Rev 32:1544–1568

    PubMed  Google Scholar 

  • Pelletier F, Réale D, Watters J et al (2009) Value of captive populations for quantitative genetics research. Trends Ecol Evol 24:263–270

    PubMed  Google Scholar 

  • Pointer MA, Mundy NI (2008) Testing whether macroevolution follows microevolution: are colour differences among swans (Cygnus) attributable to variation at the MC1R locus? BMC Evol Biol 8:no.249

    Google Scholar 

  • Primmer CR (2009) From conservation genetics to conservation genomics. The Year in Ecology and Conservation Biology (ed. Ostfeld. RS and Schlesinger, WH). Ann N Y Acad Sci 1162:357–368

    PubMed  CAS  Google Scholar 

  • Protas ME, Patel NH (2008) Evolution of coloration patterns. Annu Rev Cell Dev Biol 24:425–446

    PubMed  CAS  Google Scholar 

  • Quinn JL, Patrick SC, Bouwhuis S et al (2009) Heterogeneous selection on a heritable temperament trait in a variable environment. J Anim Ecol 78:1203–1215

    PubMed  Google Scholar 

  • Range F, Horn L, Bugnyar T et al (2009) Social attention in keas, dogs, and human children. Anim Cogn 12:181–192

    PubMed  Google Scholar 

  • Réale D, Reader SM, Sol D et al (2007) Integrating animal temperament within ecology and evolution. Biol Rev Camb Philos Soc 82:291–318

    PubMed  Google Scholar 

  • Reif A, Lesch KP (2003) Toward a molecular architecture of personality. Behav Brain Res 139:1–20

    PubMed  CAS  Google Scholar 

  • Replogle K, Arnold AP, Ball GF et al (2008) The songbird neurogenomics (SoNG) initiative: community-based tools and strategies for study of brain gene function and evolution. BMC Genom 9:art no 131

    Google Scholar 

  • Rodenburg TB, Komen H, Ellen ED et al (2008) Selection method and early-life-history affect behavioural development, feather pecking and cannibalism in laying hens: a review. Appl Anim Behav Sci 110:217–228

    Google Scholar 

  • Savitz JB, Ramesar RS (2004) Genetic variants implicated in personality: a review of the more promising candidates. Am J Med Genet B Neuropsychiatr Genet 131B:20–32

    PubMed  Google Scholar 

  • Schinka JA, Letsch EA, Crawford FC (2002) DRD4 and novelty seeking: results of meta-analyses. Am J Med Genet 114:643–648

    PubMed  CAS  Google Scholar 

  • Schloegl C, Dierks A, Gajdon GK et al (2009) What you see is what you get? Exclusion performances in ravens and keas. PLoS One 4:e6368

    PubMed  Google Scholar 

  • Schuett W, Dall SRX (2009) Sex differences, social context and personality in zebra finches, Taeniopygia guttata. Anim Behav 77:1041–1050

    Google Scholar 

  • Siegel PB, Dodgson JB, Andersson L (2006) Progress from chicken genetics to the chicken genome. Poultry Sci 85:2050–2060

    CAS  Google Scholar 

  • Sih A, Bell AM (2008) Insights for behavioral ecology from behavioral syndromes. Adv Stud Behav 38:227–281

    Google Scholar 

  • Sih A, Bell A, Johnson JC (2004a) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    PubMed  Google Scholar 

  • Sih A, Bell AM, Johnson JC et al (2004b) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277

    PubMed  Google Scholar 

  • Slate J, Gratten J, Beraldi D et al (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97–107

    PubMed  CAS  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16

    PubMed  Google Scholar 

  • Stapley J, Birkhead TR, Burke T et al (2008) A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution. Genetics 179:651–667

    PubMed  CAS  Google Scholar 

  • van Bers NEM, van Oers K, Kerstens HHD et al (2010) Genome-wide SNP detection in the great tit Parus major using high throughput sequencing. Mol Ecol 19:89–99

    Google Scholar 

  • van Gestel S, van Broeckhoven C (2003) Genetics of personality: are we making progress? Mol Psychiatry 8:840–852

    PubMed  Google Scholar 

  • van Oers K, Drent PJ, de Goede P et al (2004) Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. Proc Biol Sci 271:65–73

    PubMed  Google Scholar 

  • van Oers K, de Jong G, van Noordwijk AJ et al (2005) Contribution of genetics to the study of animal personalities: a review of case studies. Behaviour 142:1185–1206

    Google Scholar 

  • van Oers K, Drent PJ, Dingemanse NJ et al (2008) Personality is associated with extrapair paternity in great tits, Parus major. Anim Behav 76:555–563

    Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc Biol Sci 275:649–659

    PubMed  Google Scholar 

  • Wang J, He XM, Ruan J et al (2005) ChickVD: a sequence variation database for the chicken genome. Nucleic Acids Res 33:D438–D441

    PubMed  CAS  Google Scholar 

  • Wilson DS (1998) Adaptive individual differences within single populations. Philos Trans R Soc B 353:199–205

    Google Scholar 

  • Wolf M, van Doorn GS, Leimar O et al (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    PubMed  CAS  Google Scholar 

  • Wolf M, van Doorn GS, Weissing FJ (2008) Evolutionary emergence of responsive and unresponsive personalities. Proc Natl Acad Sci USA 105:15825–15830

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

My thanks go to the following people for providing photographs: Kees van Oers (Fig. 13.1a, b), Andrew Walmsley (Fig. 13.4a), and Ruedi Fries (Fig. 13.4b) and to the Royal Society (London) for permission to reproduce the data shown in Fig. 13.3. Many thanks to Silke Steiger for generating the snake plot shown in Fig. 13.2, to Kees van Oers and Peter Korsten for very helpful comments on a draft version of this chapter, and to Miho Murayama for her patient editorial assistance. I am grateful to my wife, Petra, for her patience and support during the writing of this chapter and to my children, Finn and Ella, for constantly reminding me how great the mystery surrounding human personality really is.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Fidler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Fidler, A. (2011). Personality-Associated Genetic Variation in Birds and Its Possible Significance for Avian Evolution, Conservation, and Welfare. In: Inoue-Murayama, M., Kawamura, S., Weiss, A. (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53892-9_13

Download citation

Publish with us

Policies and ethics