Advertisement

A Molecular Communication System

  • Yuki Moritani
  • Satoshi Hiyama
  • Tatsuya Suda
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 2)

Abstract

Molecular communication uses molecules (i.e., chemical signals) as an information carrier and allows biologically- and artificially-created nano- or cell-scale entities to communicate over a short distance. It is a new communication paradigm and is different from the traditional communication that uses electromagnetic waves (i.e., electronic and optical signals) as an information carrier. This paper focuses on system design and experimental results of molecular communication.

Keywords

Lipid Bilayer Membrane Traditional Communication Information Carrier Communication Paradigm Molecular Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., Nakano, T.: Molecular Communication. In: Proc. NSTI Nanotechnology Conference and Trade Show, Anaheim, May 2005, vol. 3, pp. 391–394 (2005)Google Scholar
  2. 2.
    Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology - An Introduction to the Molecular Biology of the Cell. Garland Publishing, New York (1998)Google Scholar
  3. 3.
    Luisi, P.L., Walde, P.: Giant Vesicles. John Wiley & Sons Inc., Chichester (2000)Google Scholar
  4. 4.
    Vale, R.D.: The Molecular Motor Toolbox for Intracellular. Transport. Cell. 112, 467–480 (2003)Google Scholar
  5. 5.
    Moritani, Y., Hiyama, S., Suda, T.: Molecular Communication among Nanomachines Using Vesicles. In: Proc. NSTI Nanotechnology Conference and Trade Show, Boston, May 2006, vol. 2, pp. 705–708 (2006)Google Scholar
  6. 6.
    Moritani, Y., Nomura, S.-M., Hiyama, S., Akiyoshi, K., Suda, T.: A Molecular Communication Interface Using Liposomes with Gap Junction Proteins. In: Proc. Bio Inspired Models of Network, Information and Computing Systems, Cavalese (December 2006)Google Scholar
  7. 7.
    Kumar, N.M., Gilula, N.B.: The Gap Junction Communication Channel. Cell 84, 381–388 (1996)CrossRefGoogle Scholar
  8. 8.
    Kaneda, M., Nomura, S.-M., Ichinose, S., Kondo, S., Nakahama, K., Akiyoshi, K., Morita, I.: Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes. Biomaterials 30, 3971–3977 (2009)CrossRefGoogle Scholar
  9. 9.
    Moritani, Y., Nomura, S.-M., Hiyama, S., Suda, T., Akiyoshi, K.: A Communication Interface Using Vesicles Embedded with Channel Forming Proteins in Molecular Communication. In: Proc. Bio Inspired Models of Network, Information and Computing Systems, Budapest (December 2007)Google Scholar
  10. 10.
    Van den Heuvel, M.G.L., Dekker, C.: Motor Proteins at Work for Nanotechnology. Science 317, 333–336 (2007)CrossRefGoogle Scholar
  11. 11.
    Hiyama, S., Isogawa, Y., Suda, T., Moritani, Y., Sutoh, K.: A Design of an Autonomous Molecule Loading/Transporting/Unloading System Using DNA Hybridization and Biomolecular Linear Motors. In: Proc. European Nano Systems, Paris, December 2005, pp. 75–80 (2005)Google Scholar
  12. 12.
    Hiyama, S., Inoue, T., Shima, T., Moritani, Y., Suda, T., Sutoh, K.: Autonomous Loading/Unloading and Transport of Specified Cargoes by Using DNA Hybridization and Biological Motor-Based Motility. Small 4, 410–415 (2008)CrossRefGoogle Scholar
  13. 13.
    Hiyama, S., Gojo, R., Shima, T., Takeuchi, S., Sutoh, K.: Biomolecular-Motor-Based Nano- or Microscale Particle Translocations on DNA Microarrays. Nano Letters 9(6), 2407–2413 (2009)CrossRefGoogle Scholar
  14. 14.
    Sasaki, Y., Hashizume, M., Maruo, K., Yamasaki, N., Kikuchi, J., Moritani, Y., Hiyama, S., Suda, T.: Controlled Propagation in Molecular Communication Using Tagged Liposome Containers. In: Proc. Bio Inspired Models of Network, Information and Computing Systems, Cavalese (December 2006)Google Scholar
  15. 15.
    Mukai, M., Maruo, K., Kikuchi, J., Sasaki, Y., Hiyama, S., Moritani, Y., Suda, T.: Propagation and amplification of molecular information using a photoresponsive molecular switch. Supramolecular Chemistry 21, 284–291 (2009)CrossRefGoogle Scholar
  16. 16.
    Iwamoto, S., Otsuki, M., Sasaki, Y., Ikeda, A., Kikuchi, J.: Gemini peptide lipids with ditopic ion-recognition site. Preparation and functions as an inducer for assembling of liposomal membranes. Tetrahedron 60, 9841–9847 (2004)CrossRefGoogle Scholar
  17. 17.
    Otsuki, M., Sasaki, Y., Iwamoto, S., Kikuchi, J.: Liposomal sorting onto substrate through ion recognition by gemini peptide lipids. Chemistry Letters 35, 206–207 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Tokyo 2010

Authors and Affiliations

  • Yuki Moritani
    • 1
  • Satoshi Hiyama
    • 1
  • Tatsuya Suda
    • 2
  1. 1.Research Laboratories, NTT DOCOMO, Inc.3-5 Hikarinooka, Yokosuka-shiKanagawaJapan
  2. 2.Information and Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations