Skip to main content

Models and Mechanisms for Artificial Morphogenesis

  • Conference paper

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 2))

Abstract

Embryological development provides an inspiring example of the creation of complex hierarchical structures by self-organization. Likewise, biological metamorphosis shows how these complex systems can radically restructure themselves. Our research investigates these principles and their application to artificial systems in order to create intricately structured systems that are ordered from the nanoscale up to the macroscale. However these processes depend on mutually interdependent unfoldings of an information process and of the “body” in which it is occurring. Such embodied computation provides challenges as well as opportunities, and in order to fulfill its promise, we need both formal and informal models for conceptualizing, designing, and reasoning about embodied computation. This paper presents a preliminary design for one such model especially oriented toward artificial morphogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier, Amsterdam (2005)

    Google Scholar 

  2. Ambrosi, D., Gamba, A., Serini, G.: Cell directional persistence and chemotaxis in vascular morphogenesis. Bulletin of Mathematical Biology 67, 1851–1873 (2004)

    Article  MathSciNet  Google Scholar 

  3. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5, 2586–2592 (2005)

    Article  Google Scholar 

  4. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34(10-16) (1982)

    Google Scholar 

  5. Beysens, D.A., Forgacs, G., Glazier, J.A.: Cell sorting is analogous to phase ordering in fluids. Proc. Nat. Acad. Sci. USA 97, 9467–9471 (2000)

    Article  Google Scholar 

  6. Brooks, R.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  7. Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT Press, Cambridge (1997)

    Google Scholar 

  8. de Gennes, P.G.: Soft matter. Science 256, 495–497 (1992)

    Article  Google Scholar 

  9. Forgacs, G., Newman, S.A.: Biological Physics of the Developing Embryo. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  10. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  11. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Physical Review Letters 90(11), 118101-1 – 118101-4 (2003)

    Google Scholar 

  12. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  13. Johnson, M., Rohrer, T.: We are live creatures: Embodiment, American pragmatism, and the cognitive organism. In: Zlatev, J., Ziemke, T., Frank, R., Dirven, R. (eds.) Body, Language, and Mind, vol. 1, pp. 17–54. Mouton de Gruyter, Berlin (2007)

    Google Scholar 

  14. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  15. MacLennan, B.J.: Universally programmable intelligent matter: Summary. In: IEEE Nano 2002 Proceedings, pp. 405–408. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  16. MacLennan, B.J.: Molecular combinatory computing for nanostructure synthesis and control. In: IEEE Nano 2003 Proceedings, p. 13_01. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  17. MacLennan, B.J.: Natural computation and non-Turing models of computation. Theoretical Computer Science 317(1-3), 115–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. MacLennan, B.J.: Radical reconfiguration by universally programmable intelligent matter. In: Air Force Reconfigurable Electronics Workshop, Santa Fe, NM, May 17-18. Air Force Research Laboratory (2004)

    Google Scholar 

  19. MacLennan, B.J.: Radical reconfiguration of computers by programmable matter: Progress on universally programmable intelligent matter — UPIM report 9. Technical Report CS-04-531, Dept. of Computer Science, University of Tennessee, Knoxville (2004)

    Google Scholar 

  20. MacLennan, B.J.: Highly programmable matter and generalized computation: Research in reconfigurable analog and digital computation in bulk materials. In: 1st AFRL Reconfigurable Systems Workshop, Albuquerque, NM, Feburary 14-15, pp. 14–15. Air Force Research Laboratory (2007)

    Google Scholar 

  21. MacLennan, B.J.: Embodiment and non-Turing computation. In: 2008 North American Computing and Philosophy Conference: The Limits of Computation, Bloomington, IN, July 10-12. The International Association for Computing and Philosophy (2008), http://www.cs.utk.edu/~mclennan/papers/AEC-TR.pdf

  22. MacLennan, B.J.: Computation and nanotechnology (editorial preface). International Journal of Nanotechnology and Molecular Computation 1(1), i–ix (2009)

    Google Scholar 

  23. MacLennan, B.J.: Configuration and reconfiguration of complex systems by artificial morphogenesis. In: Reconfigurable Systems Workshop 2009: Discovery Challenge Thrust, Santa Fe, NM, July 20-22. Air Force Office of Scientific Research (2009)

    Google Scholar 

  24. MacLennan, B.J.: Super-Turing or non-Turing? Extending the concept of computation. International Journal of Unconventional Computing 5(3-4), 369–387 (2009)

    Google Scholar 

  25. MacLennan, B.J.: Bodies — both informed and transformed: Embodied computation and information processing. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation. World Scientific, Singapore (in press)

    Google Scholar 

  26. Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Developmental Biology 289, 44–54 (2006)

    Article  Google Scholar 

  27. Odell, G.M., Oster, G., Alberch, P., Burnside, B.: The mechanical basis of morphogenesis. I. Epithial folding and invagination. Developmental Biology 85, 446–462 (1981)

    Article  Google Scholar 

  28. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think — A New View of Intelligence. MIT Press, Cambridge (2007)

    Google Scholar 

  29. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)

    Article  Google Scholar 

  30. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  31. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Symposium on Theory of Computing (STOC), New York, pp. 459–468. Association for Computing Machinery (2000)

    Google Scholar 

  32. Salazar-Ciudad, I., Jernvall, J., Newman, S.A.: Mechanisms of pattern formation in development and evolution. Development 130, 2027–2037 (2003)

    Article  Google Scholar 

  33. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. The EMBO Journal 22(8), 1771–1779 (2003)

    Article  Google Scholar 

  34. Steinberg, M.S., Poole, T.J.: Liquid behavior of embryonic tissues. In: Bellairs, R., Curtis, A.S.G. (eds.) Cell Behavior, pp. 583–607. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  35. Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  36. Tomlin, C.J., Axelrod, J.D.: Biology by numbers: Mathematical modelling in developmental biology. Nature Reviews Genetics 8, 331–340 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

MacLennan, B.J. (2010). Models and Mechanisms for Artificial Morphogenesis. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics