Skip to main content

A New Differential Evolution for Multiobjective Optimization by Uniform Design and Minimum Reduce Hypervolume

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 2))

Abstract

Differential evolution is a powerful and robust method to solve the Multi-Objective Problems in MOEAs. To enhance the differential evolution for MOPs, we focus on two aspects: the population initialization and acceptance rule. In this paper, we present a new differential evolution called DEMO\(_{DV}^{UD}\), it mainly include: (1) the first population is constructed by statistical method: Uniform Design, which can get more evenly distributed solutions than random design, (2) a new acceptance rule is firstly presented as Minimum Reduce Hypervolume. Acceptance rule is a metric to decide which solution should be cut off when the archive is full to the setting size. Crowding Distance is frequently used to estimate the length of cuboid enclosing the solution, while Minimum Reduce Hypervolume is used to estimate the volume of cuboid. The new algorithm designs a fitness function Distance/Volume that balance the CD and MRV, which maintains the spread and hypervolume along the Pareto-front. Experiment on different multi-Objective problems include ZDTx and DTLZx by jMetal 2.0, the results show that the new algorithm gets higher hypervolume, faster convergence, better distributed solutions and needs less numbers of fitness function evolutions than NSGA-II, SPEA2 and GDE3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello, C.A.C.: Evolutionary multi-objective optimization: A historical view of the Field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)

    Article  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA - II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm, Technical Report 103, Computer Engineering and Networks Laboratory (2001)

    Google Scholar 

  4. Storn, R., Price, K.: Differential evolution CA simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. Proceedings of the 2005 IEEE Congress on Evolutionary Computation (1), 443–450 (2005)

    Google Scholar 

  6. Deb, K., Mohan, M., Mishra, S.: Evaluating the epsilon-domination based multiobjective evolutionary algorithm for a quick computation of Paretooptimal solutions. Evolutionary Computation 13(4), 501–525 (2005)

    Article  Google Scholar 

  7. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  8. Fang, K.T., Ma, C.X.: Orthogonal and uniform design. Science Press, Beijing (2001) (in Chinese)

    Google Scholar 

  9. Leung, Y.W., Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation 5(1), 41–53 (2001)

    Article  Google Scholar 

  10. Zeng, S.Y., Kang, L.S., Ding, L.X.: An orthogonal multiobjective evolutionary algorithm for multi-objective optimization problems with constraints. Evolutionary Computation 12, 77–98 (2004)

    Article  Google Scholar 

  11. Cai, Z.H., Gong, W.Y., Huang, Y.Q.: A novel differential evolution algorithm based on epsilon-domination and orthogonal design method for multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 286–301. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Leung, Y.-W., Wang, Y.: Multiobjective programming using uniform design and genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part C 30(3), 293 (2000)

    Article  Google Scholar 

  13. Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos, ITI-2006-10, December (2006), http://jmetal.sourceforge.net

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Jiang, S., Cai, Z. (2010). A New Differential Evolution for Multiobjective Optimization by Uniform Design and Minimum Reduce Hypervolume. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_23

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics