Mathematical Modeling and Nonlinear Control of VTOL Aerial Vehicles

  • Kenzo Nonami
  • Farid Kendoul
  • Satoshi Suzuki
  • Wei Wang
  • Daisuke Nakazawa


In an effort to make autonomous flight behaviors available to mini and micro rotorcraft, an embedded and inexpensive autopilot was developed. In this chapter, we present the main steps for designing a nonlinear flight controller for mini rotorcraft Unmanned Aerial Vehicles (UAVs). The proposed control system is based on the nonlinear model of rotorcraft UAVs and uses the inner and outer-loop control scheme. It considers system’s nonlinearities and coupling and results in a practical controller that is easy to implement and to tune. The asymptotic stability of the complete closed-loop system was proven by exploiting the theories of systems in cascade. In addition to controller design and stability analysis, the chapter provides information about the air vehicle, sensors integration and real-time implementation of guidance, navigation and control algorithms. A mini quadrotor UAV, equipped with the embedded autopilot, has undergone an extensive program of flight tests, resulting in various flight behaviors under autonomous control from takeoff to landing. Experimental results that demonstrate the capabilities of our autonomous UAV are presented.


Trajectory Tracking Reference Trajectory Proportional Integral Derivative Flight Test Nonlinear Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altug E, Ostrowski JP, Taylor CJ (2005) Control of a quadrotor helicopter using dual camera visual feedback. Int J Robot Res 24(5):329–341CrossRefGoogle Scholar
  2. 2.
    Bouabdallah S, Murrieri P, Siegwart R (2005) Towards autonomous indoor micro vtol. Auton Robots 18(2):171–183CrossRefGoogle Scholar
  3. 3.
    Castillo P, Dzul A, Lozano R (2004) Real-time stabilization and tracking of a four rotor mini-rotorcraft. IEEE Trans Control Syst Technol 12(4):510–516MathSciNetCrossRefGoogle Scholar
  4. 4.
    Castillo P, Lozano R, Dzul A (2005) Modelling and control of mini-flying machines. Advances in industrial control. Springer, BerlinGoogle Scholar
  5. 5.
    Gavrilets V, Mettler B, Feron E (2004) Human-inspired control logic for automated maneuvering of miniature helicopter. AIAA J Guidance Control Dyn 27(5):752–759CrossRefGoogle Scholar
  6. 6.
    Goldstein R (1980) Classical mechanics, 2nd edn. Addison-Wesley, Reading, MAMATHGoogle Scholar
  7. 7.
    Guenard N, Hamel T, Moreau V (2005) Dynamic modeling and intuitive control strategy for an “x4-flyer”. In: Proceedings of 5th international conference on control and automation, Budapest, Hungary, vol 1, pp 141–146Google Scholar
  8. 8.
    Gurdan D, Stumpf J, Achtelik M, Doth KM, Hirzinger G, Rus D (2007) Energy-efficient autonomous four-rotor flying robot controlled at 1 khz. In: Proceedings of the IEEE international conference on robotics and automation, Roma, Italy, pp 361–366Google Scholar
  9. 9.
    He R, Prentice S, Roy N (2008) Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: Proceedings of the IEEE international conference on robotics and automation, California, USA, pp 1814–1820Google Scholar
  10. 10.
    Hoffmann GM, Huang H, Waslander SL, Tomlin CJ (2007) Quadrotor helicopter flight dynamics and control: theory and experiment. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, South Carolina, USA, AIAA 2007-6461Google Scholar
  11. 11.
    How JP, Bethke B, Frank A, Dale D, Vian J (2008) Real-time indoor autonomous vehicle test environment. IEEE Control Syst Mag 28(2):51–64MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jang JS, Liccardo D (2006) Automation of small UAVS using a low cost mems sensor and embedded computing platform. In: Proceedings of the IEEE/AIAA 25th digital avionics systems conference, Portland, USA, pp 1–9Google Scholar
  13. 13.
    Johnson E, Kannan S (2005) Adaptive trajectory control for autonomous helicopters. AIAA J Guidance Control Dyn 28(3):524–538CrossRefGoogle Scholar
  14. 14.
    Kendoul F (2007) Modelling and control of unmanned aerial vehicles, and development of a vision-based autopilot for small rotorcraft navigation. PhD Thesis Report, University of Technology of Compiegne, FranceGoogle Scholar
  15. 15.
    Kendoul F, Lara D, Fantoni I, Lozano R (2007) Real-time nonlinear embedded control for an autonomous quad-rotor helicopter. AIAA J Guidance Control Dyn 30(4):1049–1061CrossRefGoogle Scholar
  16. 16.
    Kendoul F, Fantoni I, Lozano R (2008) Asymptotic stability of hierarchical inner–outer loop-based flight controllers. In: Proceedings of the 17th IFAC world congress, Seoul, Korea, pp 1741–1746Google Scholar
  17. 17.
    Kendoul F, Fantoni I, Nonami K (2009) Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Rob Auton Syst 57:591–602CrossRefGoogle Scholar
  18. 18.
    Kendoul F, Zhenyu Y, Nonami K (2009) Embedded autopilot for accurate waypoint navigation and trajectory tracking: application to miniature rotorcraft UAVS. In: Proceedings of the IEEE international conference on robotics and automation, Kobe, Japan, pp 2884–2890Google Scholar
  19. 19.
    Kim HJ, Shim DH (2003) A flight control system for aerial robots: algorithms and experiments. Control Eng Pract 11(12):1389–1400CrossRefGoogle Scholar
  20. 20.
    Koo T, Sastry S (1998) Output tracking control design of a helicopter model based on approximate linearization. In: Proc of the IEEE conf on decision and control, Florida, USA, pp 3635–3640Google Scholar
  21. 21.
    La Civita M, Papageorgiou G, Messner WC, Kanade T (2006) Design and flight testing of an H controller for a robotic helicopter. AIAA J Guidance Control Dyn 29(2):485–494CrossRefGoogle Scholar
  22. 22.
    Madani T, Benallegue A (2006) Backstepping sliding mode control applied to a miniature quadrotor flying robot. In: Proceedings of the 32nd annual conference of the IEEE industrial electronics society, Paris, France, pp 700–705Google Scholar
  23. 23.
    McCormick BW (1995) Aerodynamics, aeronautics and flight mechanics. Wiley, New YorkGoogle Scholar
  24. 24.
    Prouty RW (1995) Helicopter performance, stability, and control. Krieger, Malabar, FLGoogle Scholar
  25. 25.
    Reiner J, Balas G, Garrard W (1995) Robust dynamic inversion for control of highly maneuverable aircraft. AIAA J Guidance Control Dyn 18(1):18–24CrossRefGoogle Scholar
  26. 26.
    Saripalli S, Montgomery J, Sukhatme G (2003) Visually-guided landing of an unmanned aerial vehicle. IEEE Trans Rob Autom 19(3):371–381CrossRefGoogle Scholar
  27. 27.
    Scherer S, Singh S, Chamberlain L, Elgersma M (2008) Flying fast and low among obstacles: methodology and experiments. Int J Robot Res 27(5):549–574CrossRefGoogle Scholar
  28. 28.
    Sepulcre R, Jankovic M, Kokotovic P (1997) Constructive nonlinear control. Communications and control engineering series. Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Shim DH, Kim HJ, Sastry S (2003) A flight control system for aerial robots: algorithms and experiments. Control Eng Pract 11(2):1389–1400CrossRefGoogle Scholar
  30. 30.
    Shin J, Fujiwara D, Nonami K, Hazawa K (2005) Model-based optimal attitude and positioning control of small-scale unmanned helicopter. Robotica 23:51–63CrossRefGoogle Scholar
  31. 31.
    Sontag E (1988) Smooth stabilization implies coprime factorization. IEEE Trans Automat Contr 34(4):435–443MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tayebi A, McGilvray S (2006) Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Control Syst Techol 14(3):562–571CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Kenzo Nonami
    • 1
  • Farid Kendoul
    • 2
  • Satoshi Suzuki
    • 3
  • Wei Wang
    • 4
  • Daisuke Nakazawa
    • 5
  1. 1.Faculty of EngineeringChiba UniversityChibaJapan
  2. 2.CSIRO Queensland Centre for Advanced TechnologiesAutonomous Systems LaboratoryPullenvaleAustralia
  3. 3.International Young Researchers Empowerment CenterShinshu UniversityUedaJapan
  4. 4.College of Information and Control EngineeringNanjing University of Information Science & TechnologyNanjingP.R. China
  5. 5.Advanced Technology R&D CenterMitsubishi Electric CorporationAmagasakiJapan

Personalised recommendations