Advertisement

Development of Autonomous Quad-Tilt-Wing (QTW) Unmanned Aerial Vehicle: Design, Modeling, and Control

  • Kenzo Nonami
  • Farid Kendoul
  • Satoshi Suzuki
  • Wei Wang
  • Daisuke Nakazawa

Abstract

In this chapter, we propose an autonomous attitude control of a quad tilt wing-unmanned aerial vehicle (QTW-UAV). A QTW-UAV can achieve vertical takeoff and landing; further, hovering flight, which is characteristic of helicopters, and high cruising speeds, which are a characteristic of fixed-wing aircraft, can be achieved by changing the angle of the rotors and wings by a tilt mechanism. First, we construct an attitude model of the QTW-UAV by using the identification method. We then design the attitude control system with a Kalman filter-based linear quadratic integral (LQI) control method; the experiment results show that a model-based control design is very useful for the autonomous control of a QTW-UAV.

Keywords

Angular Rate Autonomous Control Control System Design Attitude Control System Attitude Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Watanabe K, Iwatani Y, Nonaka K, Hashimoto K (2008) A visual-servo-based assistant system for unmanned helicopter control. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) 2008, pp 822–827Google Scholar
  2. 2.
    Ping S, Guangping Q, Kejie L (2009) The flight control system based on multivariable pid neural network for small-scale unmanned helicopter. In: Proceedings of the international conference on information technology and computer science (ITCS) 2009, vol 1, pp 538–541Google Scholar
  3. 3.
    Jiade W, Guoyong H, Yugang F (2008) An attitude control method of unmanned helicopter based on adaptive output feedback. In: Proceedings of the 3rd international conference on intelligent system and knowledge engineering (ISKE) 2008, vol 1, pp 748–753Google Scholar
  4. 4.
    Zhou F, Jiande W, Li Ping (2008) Control system design and flight testing for a miniature unmanned helicopter. In: Proceedings of the 7th World Congress on intelligent control and automation (WCICA) 2008, pp 2315–2319Google Scholar
  5. 5.
    Mettler B, Tischler MB, Kanade K (2002) System identification modeling of a small-scale unmanned rotorcraft for flight control design. J Am Helicopter Soc 47(1):50–63CrossRefGoogle Scholar
  6. 6.
    Esmailifar SM, Saghafi F (2009) Autonomous unmanned helicopter landing system design for safe touchdown on 6-DOF moving platform. In: Proceedings of the 5th international conference on autonomic and autonomous systems (ICAS) 2009, pp 245–250Google Scholar
  7. 7.
    Oh SR, Pathak K, Agrawal SK, Roy PH, Garrett M (2006) Approaches for a tether-guided landing of an autonomous helicopter. IEEE Trans Robot 22(3):536–544CrossRefGoogle Scholar
  8. 8.
    Oh CK, Barlow GJ (2004) Autonomous controller design for unmanned aerial vehicles using multi-objective generic programming. In: Proceedings of congress on evolutional computation 2004, vol 2, pp 1538–1545Google Scholar
  9. 9.
    Shim DH, Kim HJ, Sastry S (2002) A flight control system for aerial robots: algorithm and experiments. 15th IFAC World Congress on automatic controlGoogle Scholar
  10. 10.
    Ishidori A, Marconi L, Serrani A (2003) Robust nonlinear motion control of a helicopter. IEEE Trans Automat Contr 48(3):413–426CrossRefGoogle Scholar
  11. 11.
    Sakamoto T, Katayama H, Ichikawa I (2006) Attitude control of a helicopter model by robust PID controllers. In: Proceedings of the 2006 IEEE international conference on control applications, pp 1971–1976Google Scholar
  12. 12.
    Daigo F, Jinok S, Kensaku H, Kenzo N (2004) H hovering and guidance control for autonomous small-scale unmanned helicopter. Trans Jpn Soc Mech Eng Ser C 70(694): 1708–1714CrossRefGoogle Scholar
  13. 13.
    Kensaku H, Jinok S, Daigo F, Kazuhiro I, Delshan F, Kenzo N (2004) Autonomous flight control of hobby-class small unmanned helicopter (modeling based on experimental identification and autonomous flight control experiment). Trans Jpn Soc Mech Eng Ser C 70(691):720–727CrossRefGoogle Scholar
  14. 14.
    Bauchau OA, Wang J (2007) Efficient and robust approaches for rotorcraft stability analysis. In: American Helicopter Society 63rd annual forum, Virginia Beach, USA, 2007Google Scholar
  15. 15.
    Benedict M, Jarugumilli T, Chopra I (2009) Design and development of a hover-capable cyclocopter micro air vehicle. In: American Helicopter Society 65th annual forum, Grapevine, USA, 2009Google Scholar
  16. 16.
    Bermes C, Schafroth D, Bouabdallah S, Siegwart R (2009) Design parameters for coaxial rotary wing mavs with passive roll and pitch stability. In: American Helicopter Society 65th annual forum, Grapevine, USA, 2009Google Scholar
  17. 17.
    Bhandari S, Colgren R (2006) 6-dof dynamic model for a raptor 50 UAV helicopter including stabilizer bar dynamics. In: AIAA modeling and simulation technologies conference and exhibit, Keystone, USA, 2006Google Scholar
  18. 18.
    Bohorquez F, Rankinsy F, Baederz J, Pines D (2003) Hover performance of rotor blades at low reynolds numbers for rotary wing micro air vehicles. An experimental and CFD study. In: AIAA applied aerodynamics conference, Orlando, USA, 2003Google Scholar
  19. 19.
    Cheviron T, Chriette A, Plestan F (2009) Generic nonlinear model of reduced scale UAVs. In: IEEE international conference on robotics and automation (ICRA), Kobe, Japan, 2009Google Scholar
  20. 20.
    Fusato D, Celi R (2003) Design sensitivity analysis for helicopter flight dynamic and aeromechanic stability. J Guid Control Dyn 26(6):918–927CrossRefGoogle Scholar
  21. 21.
    Gress GR (2007) Lift fans as gyroscopes for controlling compact VTOL air vehicles: overview and development status of oblique active tilting. In: American Helicopter Society 63rd annual forum, Virginia Beach, USA, 2007Google Scholar
  22. 22.
  23. 23.
    Jinok S, Daigo F, Kensaku H, Kenzo N (2002) Attitude control and hovering control of radio controlled helicopter. Trans Jpn Soc Mech Eng Ser C 68(675):3284–3291CrossRefGoogle Scholar
  24. 24.
    Satoshi S, Jinok S, Makoto T, Yoshiro K, Daisuke N, Kenzo N (2007) Analytical modeling and autonomous hovering control of hobby class 5 kg unmanned helicopter. Trans Jpn Soc Mech Eng Ser C 73(726):562–569CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Kenzo Nonami
    • 1
  • Farid Kendoul
    • 2
  • Satoshi Suzuki
    • 3
  • Wei Wang
    • 4
  • Daisuke Nakazawa
    • 5
  1. 1.Faculty of EngineeringChiba UniversityChibaJapan
  2. 2.CSIRO Queensland Centre for Advanced TechnologiesAutonomous Systems LaboratoryPullenvaleAustralia
  3. 3.International Young Researchers Empowerment CenterShinshu UniversityUedaJapan
  4. 4.College of Information and Control EngineeringNanjing University of Information Science & TechnologyNanjingP.R. China
  5. 5.Advanced Technology R&D CenterMitsubishi Electric CorporationAmagasakiJapan

Personalised recommendations