Skip to main content

Guidance and Navigation Systems for Small Aerial Robots

  • Chapter
Autonomous Flying Robots

Abstract

As the capabilities of Unmanned Aerial Vehicles (UAVs) expand, increasing demands are being placed on the hardware and software that comprise their guidance and navigation systems. Guidance, navigation and control algorithms are the core of flight software of UAVs to successfully complete the assigned mission through autonomous flight. This chapter describes some guidance and navigation systems that we have designed and successfully applied to the autonomous flight of a mini rotorcraft UAV that weighs less than 0.7 kg. The real-time flight test results show that the vehicle can perform autonomous flight reliably in indoor and outdoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here waypoint navigation is defined as the process of automatically following a path defined by a set of geodetic coordinates (GPS coordinates).

  2. 2.

    Latitude–Longitude–Altitude.

  3. 3.

    North–East–Down.

  4. 4.

    For comparison purpose, the SFM estimates are scaled and normalized in a post-processing step in order to obtain the absolute camera motion and depths.

References

  1. Amidi O, Kanade T, Fujita K (1999) A visual odometer for autonomous helicopter fight. Rob Auton Syst 28(2–3):185–193

    Article  Google Scholar 

  2. Azrad S, Kendoul F, Perbrianti D, Nonami K (2009) Visual servoing of an autonomous micro air vehicle for ground object tracking. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, St. Louis, MO, USA

    Google Scholar 

  3. Bradski G (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2

    Google Scholar 

  4. Caballero F, Merino L, Ferruz J, Ollero A (2009) Vision-based odometry and slam for medium and high altitude flying UAVS. J Intell Rob Syst 54:137–161

    Article  Google Scholar 

  5. Christophersen HB, Pickell RW, Neidhoefer JC et al (2006) A compact guidance, navigation, and control system for unmanned aerial vehicles. AIAA J Aerosp Comput Inform Commun 3:187–213

    Article  Google Scholar 

  6. Egelhaaf M, Kern R (2002) Vision in flying insects. Curr Opin Neurobiol 12(6):699–706

    Article  Google Scholar 

  7. He R, Prentice S, Roy N (2008) Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: Proceedings of the IEEE international conference on robotics and automation, California, USA, pp 1814–1820

    Google Scholar 

  8. Jia D, Vagners J (2004) Parallel evolutionary algorithms for UAV path planning. In: AIAA 1st intelligent systems technical conference, Illinois, USA, AIAA 2004-6230

    Google Scholar 

  9. Johnson A, Montgomery J, Matthies L (2005) Vision guided landing of an autonomous helicopter in hazardous terrain. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), Barcelona, Spain, pp 4470–4475

    Google Scholar 

  10. Johnson EN, Calise AJ, Watanabe Y, Ha J, Neidhoefer JC (2007) Real-time vision-based relative aircraft navigation. AIAA J Aerosp Comput Inform Commun 4:707–738

    Article  Google Scholar 

  11. Kanade T, Amidi O, Ke Q (2004) Real-time and 3D vision for autonomous small and micro air vehicles. In: Proc. of the 43rd IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, pp 1655–1662

    Google Scholar 

  12. Kendoul F, Fantoni I, Nonami K (2009) Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Rob Auton Syst 57:591–602

    Article  Google Scholar 

  13. Keviczky T, Balas G (2005) Software-enabled receding horizon control for autonomous UAV guidance. AIAA J Guidance Control Dyn 29(3):680–694

    Article  Google Scholar 

  14. Kima J, Sukkarieh S (2007) Real-time implementation of airborne inertial-slam. Rob Auton Syst 55:62–71

    Article  Google Scholar 

  15. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proc. DARPA IU workshop, pp 121–130

    Google Scholar 

  16. Mettler B, Valenti M, Schouwenaars T, Kuwata Y, How J, Paunicka J, Feron E (2003) Autonomous UAV guidance build-up: flight-test demonstration and evaluation plan. In: AIAA guidance, navigation, and control conference (AIAA-2003-5744)

    Google Scholar 

  17. Ruffier F, Franceschini N (2005) Optic flow regulation: the key to aircraft automatic guidance. Rob Auton Syst 50(4):177–194

    Article  Google Scholar 

  18. Saripalli S, Montgomery J, Sukhatme G (2003) Visually-guided landing of an unmanned aerial vehicle. IEEE Trans Rob Autom 19(3):371–381

    Article  Google Scholar 

  19. Scherer S, Singh S, Chamberlain L, Elgersma M (2008) Flying fast and low among obstacles: methodology and experiments. Int J Robot Res 27(5):549–574

    Article  Google Scholar 

  20. Schouwenaars T, Valenti M, Feron E, How J (2005) Implementation and flight test results of milp-based UAV guidance. In: IEEE aerospace conference, pp 1–13

    Google Scholar 

  21. Srinivasan MV, Zhang S, Lehrer M, Collett T (1996) Honeybee navigation en route to the gaoal: visual flight control and odometry. J Exp Biol 199(1):237–244

    Google Scholar 

  22. Veksler O (2003) Fast variable window for stereo correspondence using integral image. In: IEEE conf on computer vision and pattern recognition, pp 556–661

    Google Scholar 

  23. Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  24. Zufferey JC, Floreano D (2006) Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans Robot 22(1):137–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Nonami Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakazawa, D. (2010). Guidance and Navigation Systems for Small Aerial Robots. In: Autonomous Flying Robots. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53856-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53856-1_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53855-4

  • Online ISBN: 978-4-431-53856-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics