Guidance and Navigation Systems for Small Aerial Robots

  • Kenzo Nonami
  • Farid Kendoul
  • Satoshi Suzuki
  • Wei Wang
  • Daisuke Nakazawa


As the capabilities of Unmanned Aerial Vehicles (UAVs) expand, increasing demands are being placed on the hardware and software that comprise their guidance and navigation systems. Guidance, navigation and control algorithms are the core of flight software of UAVs to successfully complete the assigned mission through autonomous flight. This chapter describes some guidance and navigation systems that we have designed and successfully applied to the autonomous flight of a mini rotorcraft UAV that weighs less than 0.7 kg. The real-time flight test results show that the vehicle can perform autonomous flight reliably in indoor and outdoor environments.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Navigation System Optic Flow 


  1. 1.
    Amidi O, Kanade T, Fujita K (1999) A visual odometer for autonomous helicopter fight. Rob Auton Syst 28(2–3):185–193CrossRefGoogle Scholar
  2. 2.
    Azrad S, Kendoul F, Perbrianti D, Nonami K (2009) Visual servoing of an autonomous micro air vehicle for ground object tracking. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, St. Louis, MO, USAGoogle Scholar
  3. 3.
    Bradski G (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2Google Scholar
  4. 4.
    Caballero F, Merino L, Ferruz J, Ollero A (2009) Vision-based odometry and slam for medium and high altitude flying UAVS. J Intell Rob Syst 54:137–161CrossRefGoogle Scholar
  5. 5.
    Christophersen HB, Pickell RW, Neidhoefer JC et al (2006) A compact guidance, navigation, and control system for unmanned aerial vehicles. AIAA J Aerosp Comput Inform Commun 3:187–213CrossRefGoogle Scholar
  6. 6.
    Egelhaaf M, Kern R (2002) Vision in flying insects. Curr Opin Neurobiol 12(6):699–706CrossRefGoogle Scholar
  7. 7.
    He R, Prentice S, Roy N (2008) Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: Proceedings of the IEEE international conference on robotics and automation, California, USA, pp 1814–1820Google Scholar
  8. 8.
    Jia D, Vagners J (2004) Parallel evolutionary algorithms for UAV path planning. In: AIAA 1st intelligent systems technical conference, Illinois, USA, AIAA 2004-6230Google Scholar
  9. 9.
    Johnson A, Montgomery J, Matthies L (2005) Vision guided landing of an autonomous helicopter in hazardous terrain. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), Barcelona, Spain, pp 4470–4475Google Scholar
  10. 10.
    Johnson EN, Calise AJ, Watanabe Y, Ha J, Neidhoefer JC (2007) Real-time vision-based relative aircraft navigation. AIAA J Aerosp Comput Inform Commun 4:707–738CrossRefGoogle Scholar
  11. 11.
    Kanade T, Amidi O, Ke Q (2004) Real-time and 3D vision for autonomous small and micro air vehicles. In: Proc. of the 43rd IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, pp 1655–1662Google Scholar
  12. 12.
    Kendoul F, Fantoni I, Nonami K (2009) Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Rob Auton Syst 57:591–602CrossRefGoogle Scholar
  13. 13.
    Keviczky T, Balas G (2005) Software-enabled receding horizon control for autonomous UAV guidance. AIAA J Guidance Control Dyn 29(3):680–694CrossRefGoogle Scholar
  14. 14.
    Kima J, Sukkarieh S (2007) Real-time implementation of airborne inertial-slam. Rob Auton Syst 55:62–71CrossRefGoogle Scholar
  15. 15.
    Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proc. DARPA IU workshop, pp 121–130Google Scholar
  16. 16.
    Mettler B, Valenti M, Schouwenaars T, Kuwata Y, How J, Paunicka J, Feron E (2003) Autonomous UAV guidance build-up: flight-test demonstration and evaluation plan. In: AIAA guidance, navigation, and control conference (AIAA-2003-5744)Google Scholar
  17. 17.
    Ruffier F, Franceschini N (2005) Optic flow regulation: the key to aircraft automatic guidance. Rob Auton Syst 50(4):177–194CrossRefGoogle Scholar
  18. 18.
    Saripalli S, Montgomery J, Sukhatme G (2003) Visually-guided landing of an unmanned aerial vehicle. IEEE Trans Rob Autom 19(3):371–381CrossRefGoogle Scholar
  19. 19.
    Scherer S, Singh S, Chamberlain L, Elgersma M (2008) Flying fast and low among obstacles: methodology and experiments. Int J Robot Res 27(5):549–574CrossRefGoogle Scholar
  20. 20.
    Schouwenaars T, Valenti M, Feron E, How J (2005) Implementation and flight test results of milp-based UAV guidance. In: IEEE aerospace conference, pp 1–13Google Scholar
  21. 21.
    Srinivasan MV, Zhang S, Lehrer M, Collett T (1996) Honeybee navigation en route to the gaoal: visual flight control and odometry. J Exp Biol 199(1):237–244Google Scholar
  22. 22.
    Veksler O (2003) Fast variable window for stereo correspondence using integral image. In: IEEE conf on computer vision and pattern recognition, pp 556–661Google Scholar
  23. 23.
    Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  24. 24.
    Zufferey JC, Floreano D (2006) Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans Robot 22(1):137–146CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Kenzo Nonami
    • 1
  • Farid Kendoul
    • 2
  • Satoshi Suzuki
    • 3
  • Wei Wang
    • 4
  • Daisuke Nakazawa
    • 5
  1. 1.Faculty of EngineeringChiba UniversityChibaJapan
  2. 2.CSIRO Queensland Centre for Advanced TechnologiesAutonomous Systems LaboratoryPullenvaleAustralia
  3. 3.International Young Researchers Empowerment CenterShinshu UniversityUedaJapan
  4. 4.College of Information and Control EngineeringNanjing University of Information Science & TechnologyNanjingP.R. China
  5. 5.Advanced Technology R&D CenterMitsubishi Electric CorporationAmagasakiJapan

Personalised recommendations