Skip to main content

Abstract

Volatility fluctuations are of great importance for the study of financial markets, and the temporal structure is an essential feature of fluctuations. To explore the temporal structure, we employ a new approach based on the return interval, which is defined as the time interval between two successive volatility values that are above a given threshold. We find that the distribution of the return intervals follows a scaling law over a wide range of thresholds, and over a broad range of sampling intervals. Moreover, this scaling law is universal for stocks of different countries, for commodities, for interest rates, and for currencies. However, further and more detailed analysis of the return intervals shows some systematic deviations from the scaling law. We also demonstrate a significant memory effect in the return intervals time organization. We find that the distribution of return intervals is strongly related to the correlations in the volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To avoid the discreteness for small τ (Eichner et al. [15] suggested a power law function for this range) and large fluctuations for very large τ, we choose the range of 0. 01 ≤ CDF ≤ 0. 50 and also use a as a free parameter to perform the stretched exponential fit.

  2. 2.

    To obtain the error bars for each point in the distribution, we produced 1,000 bootstrap resamples from the empirical data set, then compute the probability density of each of these resamples, and calculate the average and standard deviation (as shown as points and error bars in Figs. 3 and 6) for each point in the distribution. For the parameter C 1 and C 2 in (8), we use a similar method to obtain the error bars.

References

  1. Kondor I, Kertész J (1999) Econophysics: an emerging science. Kluwer, Dordrecht

    Google Scholar 

  2. Bouchaud J-P, Potters M (2000) Theory of financial risk: from statistical physics to risk management. Cambridge University Press, Cambridge

    Google Scholar 

  3. Mantegna R, Stanley HE (2000) Introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Johnson NF, Jefferies P, Hui PM (2003) Financial market complexity. Oxford University Press, New York

    Book  Google Scholar 

  5. Liu Y, Gopikrishnan P, Cizeau P, Meyer M, Peng C-K, Stanley HE (1999) Phys Rev E 60:1390

    Article  ADS  Google Scholar 

  6. Plerou V, Gopikrishnan P, Gabaix X, Amaral LAN, Stanley HE (2001) Quant Finance 1:262

    Article  Google Scholar 

  7. Plerou V, Gopikrishnan P, Stanley HE (2005) Phys Rev E 71:046131. For application to heartbeat intervals, see Ashkenazy Y, Ivanov PCh, Havlin S, Peng C-K, Goldberger AL, Stanley HE (2001) Phys Rev Lett 86:1900

    Google Scholar 

  8. Lux T, Marchesi M (2000) Int J Theor Appl Finance 3:675

    Article  MathSciNet  MATH  Google Scholar 

  9. Giardina I, Bouchaud J-P (2001) Physica A 299:28

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Lux T, Ausloos M (2002) In: Bunde A, Kropp J, Schellnhuber HJ (eds) The science of disasters: climate disruptions, heart attacks, and market crashes. Springer, Berlin, p 373

    Google Scholar 

  11. Bunde A, Eichner JF, Havlin S, Kantelhardt JW (2004) Physica A 342:308

    Article  ADS  Google Scholar 

  12. Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2005) Phys Rev Lett 94:048701

    Article  ADS  Google Scholar 

  13. Livina VN, Havlin S, Bunde A (2005) Phys Rev Lett 95:208501

    Article  ADS  Google Scholar 

  14. Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2006) Phys Rev E 73:016130

    Article  ADS  Google Scholar 

  15. Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2007) Phys Rev E 75:011128

    Article  ADS  Google Scholar 

  16. Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE (2005) Proc Natl Acad Sci USA 102:9424

    Article  ADS  Google Scholar 

  17. Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE (2005) In: Takayasu H (ed) Proceedings of the third Nikkei econophysics research workshop and symposium, the fruits of econophysics, Tokyo, November 2004. Springer, Berlin, p 43

    Google Scholar 

  18. Wang F, Yamasaki K, Havlin S, Stanley HE (2006) Phys Rev E 73:026117

    Article  ADS  Google Scholar 

  19. Wang F, Weber P, Yamasaki K, Havlin S, Stanley HE (2007) Eur Phys J B 55:123

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Jung W-S, Wang FZ, Havlin S, Kaizoji T, Moon H-T, Stanley HE (2008) Eur Phys J B 62:113

    Article  ADS  MATH  Google Scholar 

  21. Qiu T, Guo L, Chen G (2008) Physica A 387:6812

    Article  ADS  Google Scholar 

  22. Ren F, Guo L, Zhou W-X (2008) Physica A 388:881

    Article  ADS  Google Scholar 

  23. Vodenska-Chitkushev I, Wang FZ, Weber P, Yamasaki K, Havlin S, Stanley HE (2008) Eur Phys J B 61:217

    Article  ADS  Google Scholar 

  24. Bogachev MI, Eichner JF, Bunde A (2007) Phys Rev Lett 99:240601; Bogachev MI, Bunde A (2008) Phys Rev E 78:036114

    Google Scholar 

  25. Wang F, Yamasaki K, Havlin S, Stanley HE (2008) Phys Rev E 77:016109

    Article  ADS  Google Scholar 

  26. Wang F, Yamasaki K, Havlin S, Stanley HE (2009) Phys Rev E 79:016103

    Article  ADS  Google Scholar 

  27. Ren F, Zhou W-X (2008) Europhys Lett 84:68001

    Article  ADS  Google Scholar 

  28. Wang F, Yamasaki K, Havlin S, Stanley HE (2009) In: Zhou J (ed) Complex 2009, Part I. Lecture Notes of ICST, vol 4. Springer, Shanghai, p 3

    Google Scholar 

  29. Black F, Scholes M (1973) J Polit Econ 81:637

    Article  Google Scholar 

  30. Cox JC, Ross SA (1976) J Financ Econ 3:145; Cox JC, Ross SA, Rubinstein M (1979) J Financ Econ 7:229

    Google Scholar 

  31. Altmann EG, Kantz H (2005) Phys Rev E 71:056106

    Article  MathSciNet  ADS  Google Scholar 

  32. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Phys Rev E 49:1685

    Article  ADS  Google Scholar 

  33. Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Chaos 5:82

    Article  ADS  Google Scholar 

  34. Bunde A, Havlin S, Kantelhardt JW, Penzel T, Peter J-H, Voigt K (2000) Phys Rev Lett 85:3736

    Article  ADS  Google Scholar 

  35. Hu K, Ivanov PCh, Chen Z, Carpena P, Stanley HE (2001) Phys Rev E 64:011114

    Article  ADS  Google Scholar 

  36. Chen Z, Ivanov PCh, Hu K, Stanley HE (2002) Phys Rev E 65:041107

    Article  ADS  Google Scholar 

  37. Xu L, Ivanov PCh, Hu K, Chen Z, Carbone A, Stanley HE (2005) Phys Rev E 71:051101

    Article  ADS  Google Scholar 

  38. Chen Z, Hu K, Carpena P, Bernaola-Galvan P, Stanley HE, Ivanov PCh (2005) Phys Rev E 71:011104

    Article  ADS  Google Scholar 

  39. Kantelhardt JW, Zschiegner S, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Physica A 316:87

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank A. Bunde, L. Muchnik, P. Weber, W.-S. Jung and I. Vodenska-Chitkushev for collaboration on many aspects of this research, and the NSF and Merck Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Wang, F., Yamasaki, K., Stanley, H.E., Havlin, S. (2010). Temporal Structure of Volatility Fluctuations. In: Takayasu, M., Watanabe, T., Takayasu, H. (eds) Econophysics Approaches to Large-Scale Business Data and Financial Crisis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53853-0_4

Download citation

Publish with us

Policies and ethics