Nonlinear Memory and Risk Estimation in Financial Records

  • Armin Bunde
  • Mikhail I. Bogachev


It is well known that financial data sets are multifractal and governed by nonlinear correlations. Here we are interested in the daily returns of a financial asset and in the way the occurrence of large gains or losses is triggered by the nonlinear memory. To this end, we study the statistics of the return intervals between gains (or losses) above a certain threshold Q. In the case of i.i.d. random numbers the probability density function (pdf) of the return intervals decays exponentially and the return intervals are uncorrelated. Here we show that the nonlinear correlations lead to a power law decay of the pdf and linear long-term correlations between the return intervals that are described by a power-law decay of the corresponding autocorrelation function. From the pdf of the return intervals one obtains the risk function W Q (t; Δt), which is the probability that within the next Δt units of time at least one event above Q occurs, if the last event occurred t time units ago. We propose an analytical estimate of W Q and show explicitly that the proposed method is superior to the conventional precursory pattern recognition technique widely used in signal analysis, which requires considerable fine-tuning and is difficult to implement. We also show that the estimation of the Value at Risk, which is a standard tool in finances, can be improved considerably compared with previous estimates.


Receiver Operator Characteristic Curve Return Period Autocorrelation Function Return Interval Finite Size Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We like to thank our colleagues Jan F. Eichner, Jan W. Kantelhardt and Shlomo Havlin for valuable discussions.


  1. 1.
    Bunde A, Kropp J, Schellnhuber H-J (eds) (2002) The science of disasters – climate disruptions, heart attacks, and market crashes. Springer, BerlinGoogle Scholar
  2. 2.
    Pfister C (1998) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Paul Haupt, BernGoogle Scholar
  3. 3.
    Glaser R (2001) Klimageschichte Mitteleuropas. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  4. 4.
    Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE (2005) PNAS 102:9424ADSCrossRefGoogle Scholar
  5. 5.
    Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2005) Phys Rev Lett 94:48701ADSCrossRefGoogle Scholar
  6. 6.
    Altmann EG, Kantz H (2005) Phys Rev E 71:056106MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2007) Phys Rev E 75:011128ADSCrossRefGoogle Scholar
  8. 8.
    Bogachev MI, Eichner JF, Bunde A (2007) Phys Rev Lett 99:240601ADSCrossRefGoogle Scholar
  9. 9.
    Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) Nature London 425:166ADSCrossRefGoogle Scholar
  10. 10.
    Stanley HE, Amaral LAN, Goldberger AL, Havlin S, Ivanov PCh, Peng C-K (1999) Physica A 270:309ADSCrossRefGoogle Scholar
  11. 11.
    Ivanov PCh, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR (2001) Chaos 11:641ADSMATHCrossRefGoogle Scholar
  12. 12.
    Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) (2005) Fractals in biology and medicine. Birkhäuser, BaselGoogle Scholar
  13. 13.
    Lux T, Marchesi M (2000) Int J Theor Appl Finance 3:475MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hartmann P, Straetmans S, de Vries CG (2003) A global perspective on extreme currency linkages. In: Hunter W, Kaufman G, Pomerleano M (eds) Asset price bubbles: the implications for monetary, regulatory and international policies. MIT Press, Cambridge, MAGoogle Scholar
  15. 15.
    Hartmann P, Straetmans S, de Vries CG (2004) Rev Econ Stat 86:313CrossRefGoogle Scholar
  16. 16.
    Riedi RH, Crouse MS, Ribeiro VJ, Baraniuk RG (1999) IEEE Trans Inf Theor 45:992MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Helbing D, Farkas I, Viscek T (2002) In: Bunde A, Kropp J, Schellnhuber H-J (eds) The science of disasters – climate disruptions, heart attacks and market crashes. Springer, Berlin, p 331Google Scholar
  18. 18.
    Feder J (1989) Fractals. Plenum, New YorkMATHGoogle Scholar
  19. 19.
    Peitgen H-O, Jürgens H, Saupe D (1992) Chaos and fractals: new frontiers of science. Springer, New YorkGoogle Scholar
  20. 20.
    Meneveau C, Sreenivasan KR (1987) Phys Rev Lett 59:1424ADSCrossRefGoogle Scholar
  21. 21.
    Greiner M, Eggers HC, Lipa P (1998) Phys Rev Lett 80:5333ADSCrossRefGoogle Scholar
  22. 22.
    Bacry E, Delour J, Muzy JF (2001) Phys Rev E 64:026103ADSCrossRefGoogle Scholar
  23. 23.
    Bogachev MI, Bunde A (2008) Phys Rev E 78:036114ADSCrossRefGoogle Scholar
  24. 24.
    Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Physica A 316:87–114ADSMATHCrossRefGoogle Scholar
  25. 25.
    Bendat JS, Piersol AG (1986) Random data: analysis and measurement procedures. Wiley, New YorkMATHGoogle Scholar
  26. 26.
    Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE (2006) In: Takayasu H (ed) Practical fruits of econophysics. Springer, Tokyo, p 43CrossRefGoogle Scholar
  27. 27.
    Bogachev MI, Eichner JF, Bunde A (2007) Phys Rev Lett 99:240601ADSCrossRefGoogle Scholar
  28. 28.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Bernado JM, Smith AFM (1994) Bayessian theory. Wiley, New YorkCrossRefGoogle Scholar
  30. 30.
    Hallerberg S, Altmann EG, Holstein D, Kantz H (2007) Phys Rev E 75:016706MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Hallerberg S, Kantz H (2008) Phys Rev E 77:011108MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Eisler Z, Perelló J, Masoliver J (2007) Phys Rev E 76:056105ADSCrossRefGoogle Scholar
  33. 33.
    Bogachev MI, Bunde A (2009) Phys Rev E 80:182908CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IIIJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.Radio System DepartmentSt. Petersburg State Electrotechnical UniversitySt. PetersburgRussia

Personalised recommendations