Skip to main content

Nonlinear Memory and Risk Estimation in Financial Records

  • Conference paper

Abstract

It is well known that financial data sets are multifractal and governed by nonlinear correlations. Here we are interested in the daily returns of a financial asset and in the way the occurrence of large gains or losses is triggered by the nonlinear memory. To this end, we study the statistics of the return intervals between gains (or losses) above a certain threshold Q. In the case of i.i.d. random numbers the probability density function (pdf) of the return intervals decays exponentially and the return intervals are uncorrelated. Here we show that the nonlinear correlations lead to a power law decay of the pdf and linear long-term correlations between the return intervals that are described by a power-law decay of the corresponding autocorrelation function. From the pdf of the return intervals one obtains the risk function W Q (t; Δt), which is the probability that within the next Δt units of time at least one event above Q occurs, if the last event occurred t time units ago. We propose an analytical estimate of W Q and show explicitly that the proposed method is superior to the conventional precursory pattern recognition technique widely used in signal analysis, which requires considerable fine-tuning and is difficult to implement. We also show that the estimation of the Value at Risk, which is a standard tool in finances, can be improved considerably compared with previous estimates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bunde A, Kropp J, Schellnhuber H-J (eds) (2002) The science of disasters – climate disruptions, heart attacks, and market crashes. Springer, Berlin

    Google Scholar 

  2. Pfister C (1998) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Paul Haupt, Bern

    Google Scholar 

  3. Glaser R (2001) Klimageschichte Mitteleuropas. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  4. Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE (2005) PNAS 102:9424

    Article  ADS  Google Scholar 

  5. Bunde A, Eichner JF, Kantelhardt JW, Havlin S (2005) Phys Rev Lett 94:48701

    Article  ADS  Google Scholar 

  6. Altmann EG, Kantz H (2005) Phys Rev E 71:056106

    Article  MathSciNet  ADS  Google Scholar 

  7. Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2007) Phys Rev E 75:011128

    Article  ADS  Google Scholar 

  8. Bogachev MI, Eichner JF, Bunde A (2007) Phys Rev Lett 99:240601

    Article  ADS  Google Scholar 

  9. Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) Nature London 425:166

    Article  ADS  Google Scholar 

  10. Stanley HE, Amaral LAN, Goldberger AL, Havlin S, Ivanov PCh, Peng C-K (1999) Physica A 270:309

    Article  ADS  Google Scholar 

  11. Ivanov PCh, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR (2001) Chaos 11:641

    Article  ADS  MATH  Google Scholar 

  12. Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) (2005) Fractals in biology and medicine. Birkhäuser, Basel

    Google Scholar 

  13. Lux T, Marchesi M (2000) Int J Theor Appl Finance 3:475

    Article  MathSciNet  Google Scholar 

  14. Hartmann P, Straetmans S, de Vries CG (2003) A global perspective on extreme currency linkages. In: Hunter W, Kaufman G, Pomerleano M (eds) Asset price bubbles: the implications for monetary, regulatory and international policies. MIT Press, Cambridge, MA

    Google Scholar 

  15. Hartmann P, Straetmans S, de Vries CG (2004) Rev Econ Stat 86:313

    Article  Google Scholar 

  16. Riedi RH, Crouse MS, Ribeiro VJ, Baraniuk RG (1999) IEEE Trans Inf Theor 45:992

    Article  MathSciNet  MATH  Google Scholar 

  17. Helbing D, Farkas I, Viscek T (2002) In: Bunde A, Kropp J, Schellnhuber H-J (eds) The science of disasters – climate disruptions, heart attacks and market crashes. Springer, Berlin, p 331

    Google Scholar 

  18. Feder J (1989) Fractals. Plenum, New York

    MATH  Google Scholar 

  19. Peitgen H-O, Jürgens H, Saupe D (1992) Chaos and fractals: new frontiers of science. Springer, New York

    Google Scholar 

  20. Meneveau C, Sreenivasan KR (1987) Phys Rev Lett 59:1424

    Article  ADS  Google Scholar 

  21. Greiner M, Eggers HC, Lipa P (1998) Phys Rev Lett 80:5333

    Article  ADS  Google Scholar 

  22. Bacry E, Delour J, Muzy JF (2001) Phys Rev E 64:026103

    Article  ADS  Google Scholar 

  23. Bogachev MI, Bunde A (2008) Phys Rev E 78:036114

    Article  ADS  Google Scholar 

  24. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Physica A 316:87–114

    Article  ADS  MATH  Google Scholar 

  25. Bendat JS, Piersol AG (1986) Random data: analysis and measurement procedures. Wiley, New York

    MATH  Google Scholar 

  26. Yamasaki K, Muchnik L, Havlin S, Bunde A, Stanley HE (2006) In: Takayasu H (ed) Practical fruits of econophysics. Springer, Tokyo, p 43

    Chapter  Google Scholar 

  27. Bogachev MI, Eichner JF, Bunde A (2007) Phys Rev Lett 99:240601

    Article  ADS  Google Scholar 

  28. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  29. Bernado JM, Smith AFM (1994) Bayessian theory. Wiley, New York

    Book  Google Scholar 

  30. Hallerberg S, Altmann EG, Holstein D, Kantz H (2007) Phys Rev E 75:016706

    Article  MathSciNet  ADS  Google Scholar 

  31. Hallerberg S, Kantz H (2008) Phys Rev E 77:011108

    Article  MathSciNet  ADS  Google Scholar 

  32. Eisler Z, Perelló J, Masoliver J (2007) Phys Rev E 76:056105

    Article  ADS  Google Scholar 

  33. Bogachev MI, Bunde A (2009) Phys Rev E 80:182908

    Article  Google Scholar 

Download references

Acknowledgements

We like to thank our colleagues Jan F. Eichner, Jan W. Kantelhardt and Shlomo Havlin for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Bunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Bunde, A., Bogachev, M.I. (2010). Nonlinear Memory and Risk Estimation in Financial Records. In: Takayasu, M., Watanabe, T., Takayasu, H. (eds) Econophysics Approaches to Large-Scale Business Data and Financial Crisis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53853-0_2

Download citation

Publish with us

Policies and ethics