Skip to main content

Normal Development

  • Chapter
Book cover Pediatric Neuropathology
  • 2070 Accesses

Abstract

The cerebral surface develops gradually from the fetal flat (lissencephalic) brain to the adult gyral pattern, increasing the cortical surface area until the second year of life. The sylvian fissure is apparent at approximately 14 weeks’ gestation (GW). The primary sulci, such as rolandic, calcarine, superior temporal, and precentral sulci, appear after 20 GW, the secondary sulci appear from 28 GW, and the tertiary sulci from 36 GW. The gestational age of a brain can be estimated by counting the number of convolutions (gyri) crossed by a line drawn from the frontal to the occipital pole above the insula and adding 21 to the gyral count [1]. Gestational age can also be estimated by counting gyri and sulci in neuroimages [ultrasonography and magnetic resonance imaging (MRI)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1 Normal Development

  1. Pryse-Davies J, Beard RW (1973) A necropsy study of brain swelling in the newborn with special reference to cerebral herniation. J Pathol 109:51–73.

    Article  PubMed  CAS  Google Scholar 

  2. Gilles FH, Levinton A, Dooling EC (1983) The developing human brain. John Wright, Boston, pp 117–183.

    Google Scholar 

  3. Sanes DH, Reh TA, Harris WA (2000) Development of the nervous system. Academic, San Diego.

    Google Scholar 

  4. Bayer S, Altman J (1991) Neocortical development. Raven, New York.

    Google Scholar 

  5. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84.

    Article  PubMed  CAS  Google Scholar 

  6. Conte JE, Golden JA, Kipps J, Zurlinden E (2004) Lis1 is necessary for normal non-radial migration of inhibitory neurons. Am J Pathol 16:775–784.

    Google Scholar 

  7. Deguchi K, Inoue K, Avila W, Lopez-Terrada D, Antalffy B, Quattrocchi CC, Sheldon M, Mikoshiba K, D’Arcangelo (2003) Reelin and Diabled-1 expression in developing and mature human cortical neurons. J Neuropathol Exp Neurol 62:676–684.

    PubMed  CAS  Google Scholar 

  8. Brun A (1965) The subpial granular layer of the fetal cerebral cortex in man: its ontogeny and significance in congenital cortical malformations. Acta Pathol Microbiol Scand Suppl 179.

    Google Scholar 

  9. Ben-Arie N, Bellen HJ, Armstrong D, McCall A, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172.

    Article  PubMed  CAS  Google Scholar 

  10. Friede RL (1989) Developmental neuropathology. Springer, New York, pp 1–21.

    Google Scholar 

  11. Purpura DP (1975) Normal and abnormal neuronal development in the cerebral cortex of human fetal and young infant. In: Buchwald NA, Brazier MAB (eds) Mental retardation. Academic, San Diego, pp 141–169.

    Google Scholar 

  12. Sanes DH, Reh TA, Harris WA (2000) Development of the nervous system. Academic, San Diego.

    Google Scholar 

  13. Takashima S, Chan F, Becker LE, Armstrong DL (1980) Morphology of the developing visual cortex of the human infant: a quantitative and qualitative Golgi study. J Neuropathol Exp Neurol 39:487–501.

    Article  PubMed  CAS  Google Scholar 

  14. Back SA, Luo NL, Borentstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312.

    PubMed  CAS  Google Scholar 

  15. Hasegawa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T (1992) Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev 14:1–6.

    PubMed  CAS  Google Scholar 

  16. Berry M, Butt AM, Wilkin G, Perry VH (2002) Structure and function of glia in the central nervous system. In: Graham DI, Lantos PL (eds) Greenfields’ neuropathology, 7th edn, Vol 1. Arnold, London, pp 75–123.

    Google Scholar 

  17. Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, Imai Y, Kohsaka S, Takashima S (2001) Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 20:87–91.

    PubMed  CAS  Google Scholar 

  18. Takashima S, Becker LE (1983) Developmental changes of glial fibrillary acidic protein in cerebral white matter. Arch Neurol 40:14–18.

    PubMed  CAS  Google Scholar 

  19. Takashima S, Tanaka K (1987) Development of cerebrovascular architecture and its relationship to periventricular leukomalacia in infancy. Arch Neurol 35:11–16.

    Google Scholar 

  20. Inage YW, Itoh M, Takashima S (2000) Correlation between cerebrovascular maturity and periventricular leukomalacia. Pediatr Neurol 22:204–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Normal Development. In: Pediatric Neuropathology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-49898-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-49898-8_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70246-7

  • Online ISBN: 978-4-431-49898-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics