Skip to main content

Structural Basis for Calcium-Regulated Relaxation of Striated Muscles at Interaction Sites of Troponin with Actin and Tropomyosin

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Abstract

Muscle contraction, in general, is regulated by the intracellular calcium-ion concentration. Ca2+-regulation in skeletal or cardiac muscle of vertebrate is mediated at the level of thin filaments consisting of actin, tropomyosin, and troponin. However, pure actin filaments themselves activate contraction irrespective of calcium concentration. Troponin,1 together with tropomyosin, is required to regulate contraction.2 Troponin consists of three subunits:3 inhibitory TnI, Ca2+-binding TnC, and tropomyosin-binding TnT. Troponin has an elongated shape and forms two structural regions, which are a long tail region containing the N-terminal region of TnT (TnT1 (chicken skeletal residues 1–164 of TnT)4) and a globular head region containing TnI, TnC, and the C-terminal region of TnT [TnT2 (chicken skeletal residues 165–263 of TnT)]. The globular head region plays a central role in regulating muscle contraction.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.8. References

  1. S. Ebashi, and A. Kodama, A new protein factor promoting aggregation of tropomyosin, J. Biochem. 58, 107–108 (1965).

    PubMed  CAS  Google Scholar 

  2. S. Ebashi, and M. Endo, Calcium ions and muscle contraction, Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  3. M. L. Greaser, and J. Gergely, Reconstitution of troponin activity from three protein components, J. Biol. Chem. 246, 4226–4233 (1971).

    PubMed  CAS  Google Scholar 

  4. I. Ohtsuki, Molecular arrangement of troponin-T in the thin filament, J. Biochem. 86, 491–497 (1979).

    PubMed  CAS  Google Scholar 

  5. C. S. Farah, and F. C. Reinach, The troponin complex and regulation of muscle-contraction, FASEB J. 9, 755–767 (1995).

    PubMed  CAS  Google Scholar 

  6. S. V. Perry, Troponin I: inhibitor or facilitator, Mol. Cell. Biochem. 190, 9–32 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. C. Toyoshima, and T. Wakabayashi, Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. V. Assignment of actin in the actin-tropomyosin subfragment-1 complex, J. Biochem. 97, 245–263 (1985).

    PubMed  CAS  Google Scholar 

  8. R. A. Milligan, and P. F. Flicker, Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy, J. Cell Biol. 105, 29–39 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. I. Rayment, H. M. Holden, M. Whittaker, C. B. Yohn, M. Lorenz, K. C. Holmes, and R. A. Milligan, Structure of the actin-myosin complex and its implications for muscle contraction, Science, 261, 58–65 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. C. S. Farah, C. A. Miyamoto, C. H. I. Ramos, A. C. R. Dasilva, R. B. Quaggio, K. Fujimori, L. B. Smillie, and F. C. Reinach, Structural and regulatory functions of the NH-and COOH-terminal regions of skeletal-muscle troponin-I, J. Biol. Chem. 269, 5230–5240 (1994).

    PubMed  CAS  Google Scholar 

  11. H. M. Rarick, X. H. Tu, R. J. Solaro, and A. F. Martin, The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils, J. Biol. Chem. 272, 26887–26892 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. A. Narita, T. Yasunaga, T. Ishikawa, K. Mayanagi, and T. Wakabayashi, Ca2+-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy, J. Mol. Biol. 308, 241–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature, 424, 35–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. K. Murakami, F. Yumoto, S. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol. 352, 178–201 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. T. Wakabayashi, and S. Ebashi, Calcium signaling: motility (Actomyosin-Troponin system), in: Encyclopedia of Biological Chemistry, Vol. 1, edited by W. J. Lennarz, and M. D. Lane (Elsevier, Oxford, 2004), pp. 250–255.

    Google Scholar 

  16. W. Kabsch, H. G. Mannherz, D. Suck, E. F. Pai, and K. C. Holmes, Atomic structure of the actin:DNase I complex, Nature 347, 37–44 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. C. S. Farah, C. A. Miyamoto, C. H. I. Ramos, A. C. R. Dasilva, R. B. Quaggio, K. Fujimori, L. B. Smillie, and F. C. Reinach, Structural and regulatory functions of the NH-and COOH-terminal regions of skeletal-muscle troponin-I, J. Biol. Chem. 269, 5230–5240 (1994).

    PubMed  CAS  Google Scholar 

  18. Y. Luo, J. L. Wu, J. Gergely, and T. Tao, Troponin T and Ca2+ dependence of the distance between Cys48 and Cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments, Biochemistry 36, 11027–11035 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. A. Houdusse, M. L. Love, R. Dominguez, Z. Grabarek, and C. Cohen, Structures of four Ca2+-bound troponin C at 2.0 Å resolution: further insights into the Ca2+-switch in the calmodulin superfamily, Structure 5, 1695–1711 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. D. G. Vassylyev, S. Takeda, S. Wakatsuki, and Y. Maeda, Crystal structure of troponin C in complex with troponin I fragment at 2.3-angstrom resolution, Proc. Natl. Acad. Sci. USA 95, 4847–4852 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. T. M. Blumenschein, D. B. Stone, R. J. Fletterick, R. A. Mendelson, and B. D. Sykes, Calcium-dependent changes in the flexibility of the regulatory domain of TnC in the troponin complex, J. Biol. Chem. 280, 21924–21932 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. R. E. Ferguson, Y. B. Sun, P. Mercier, A. S. Brack, B. D. Sykes, J. E. T. Corrie, D. R. Trentham, and M. Irving, In situ orientations of protein domains: troponin C in skeletal muscle fibers, Mol. Cell 11, 865–874 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. R. Maytum, F. Bathe, M. Konrad, and M. A. Geeves, Tropomyosin exon 6b is troponin-specific and required for correct acto-myosin regulation, J. Biol. Chem. 279, 18203–18209 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. P. B. Rosenthal, and R. Henderson, Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy, J. Mol. Biol. 333, 721–745 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. W. Wriggers, and S. Birmanns, Using situs for flexible and rigid-body fitting of multiresolution single-molecule data, J. Struct. Biol. 133, 193–202 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. R. A. Milligan, Protein-protein interactions in the rigor actomyosin complex, Proc. Natl. Acad. Sci. USA 93, 21–26 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. B. Malnic, C. S. Farah, and F. C. Reinach, Regulatory properties of the NH2-and COOH-terminal domains of troponin T. ATPase activation and binding to troponin I and troponin C, J. Biol. Chem. 273, 10594–10601 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. D. F. McKillop, and M. A. Geeves, Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J. 65, 693–701 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. H. Nakamura, S. Nagashima, and T. Wakabayashi, Electrostatic field around the actin filament, in: Synchrotron Radiation in the Biosciences, edited by B. Chance, J. Deisenhofer, S. Ebashi, D. T. Goodhead, J. R. Helliwell, H. E. Huxley, T. Iizuka, J. Kirz, T. Mitsui, E. Rubenstein, N. Sakabe, T. Sasaki, G. Schmahl, H. B. Sturmann, K. Wütrich and G. Zaccai (Oxford University. Press, New York, 1994), pp. 502–508.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Murakami, K., Yumoto, F., Ohki, Sy., Yasunaga, T., Tanokura, M., Wakabayashi, T. (2007). Structural Basis for Calcium-Regulated Relaxation of Striated Muscles at Interaction Sites of Troponin with Actin and Tropomyosin. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_8

Download citation

Publish with us

Policies and ethics