Disposition and Dynamics: Interdomain Orientations in Troponin

  • Ryan M. B. Hoffman
  • Brian D. Sykes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


When Galvani discovered the electrical regulation of muscle contraction science began an inexorable transformation. Observation of an inorganic trigger for a physiological event presaged the end of vitalism, the beginning of electrochemistry, and over 400 years of research into the first demonstrable biochemical machine: striated muscle. This molecular machine has been studied in various contexts, ranging from holistic (live muscle) to reductionist (purified molecules). Generations of scientists have, collectively, disassembled and reassembled the contractile apparatus of striated muscle, demonstrating an increasingly complete understanding of its function. In the process, high resolution structuresa have been determined for most components of this machine. Given the relative orientation of these proteins in a muscle fiber, visualization of muscle contraction at the atomic level seems attainable. This effort is complicated by the inherent properties of proteins, specifically, proteins with conformationally heterogeneous native ensembles.


Core Complex Open Conformation Striate Muscle Contraction Mobile Domain Troponin Complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.6. References

  1. 1.
    S. Ebashi, Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem. 10, 1–36 (1974).PubMedGoogle Scholar
  2. 2.
    J. D. Potter, and J. Gergely, Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13(13), 2697–2703 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    O. Herzberg, and M. N. G. James, Common structural framework of the two Ca2+/Mg2+ binding loops of troponin C and other Ca2+ binding proteins. Biochemistry 24(20), 5298–5302 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Sundaralingam, R. Bergstrom, G. Strasburg, S. T. Rao, P. Roychowdhury, M. Greaser, and B. C. Wang, Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227(4689), 945–948 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    S. M. Gagne, S. Tsuda, M. X. Li, L. B. Smillie, and B. D. Sykes, Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat. Struct. Biol. 2(9), 784–789 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    C. M. Slupsky, and B. D. Sykes, NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34(49), 15953–15964 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    O. Herzberg, J. Moult, and M. N. G. James, A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J. Biol. Chem. 261(6), 2638–2644 (1986).PubMedGoogle Scholar
  8. 8.
    C. M. Slupsky, The NMR Solution Structure of Calcium-Saturated Skeletal Muscle Troponin C. Ph.D. thesis, University of Alberta, Dept. of Biochemistry (1995).Google Scholar
  9. 9.
    N. Tjandra, H. Kuboniwa, H. Ren, and A. Bax, Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Eur. J. Biochem. 230(3), 1014–1024 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    A. C. Murray, and C. M. Kay, Hydrodynamic and optical properties of troponin A. Demonstration of a conformational change upon binding calcium ion. Biochemistry 11(14), 2622–2627 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    D. M. Byers, and C. M. Kay, Hydrodynamic properties of bovine cardiac troponin C. Biochemistry 21(2), 229–233 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Gulati, A. B. Akella, H. Su, E. L. Mehler, and H. Weinstein, Functional role of arginine-11 in the N-terminal helix of skeletal troponin C: combined mutagenesis and molecular dynamics investigation. Biochemistry 34(22), 7348–7355 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    S. M. Gagne, M. X. Li, and B. D. Sykes, Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 36(15), 4386–4392 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    N. C. Strynadka, and M. N. G. James, Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 58, 951–998 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    S. K. Sia, M. X. Li, L. Spyracopoulos, S. M. Gagne, W. Liu, J. A. Putkey, and B. D. Sykes, Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J. Biol. Chem. 272(29), 18216–18221 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    S. M. Gagne, M. X. Li, R. T. McKay, and B. D. Sykes, The NMR angle on troponin C. Biochem. Cell Biol. 76(2–3), 302–312 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    B. Tripet, J. E. Van Eyk, and R. S. Hodges, Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J. Mol. Biol. 271(5), 728–750 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Murakami, F. Yumoto, S.-Y. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural Basis for Ca2+-regulated Muscle Relaxation at Interaction Sites of Troponin with Actin and Tropomyosin. J. Mol. Biol. 352(1), 178–201 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424(6944), 35–41 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    B. D. Sykes, Pulling the calcium trigger. Nat. Struct. Biol. 10(8), 588–589 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    J. R. Pearlstone, and L. B. Smillie, The interaction of rabbit skeletal muscle troponin-T fragments with troponin-I. Can. J. Biochem. Cell Biol. 63(3), 212–218 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, and R. J. Fletterick, Ca2+-regulated structural changes in troponin. Proc. Natl. Acad. Sci. USA 102(14), 5038–5043 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Halle, Flexibility and packing in proteins. Proc. Natl. Acad. Sci. USA 99(3), 1274–1279 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    D. G. Vassylyev, S. Takeda, S. Wakatsuki, K. Maeda, and Y. Maeda, The crystal structure of troponin C in complex with N-terminal fragment of troponin I. The mechanism of how the inhibitory action of troponin I is released by Ca2+-binding to troponin C. Adv. Exp. Med. Biol. 453, 157–167 (1998).PubMedGoogle Scholar
  25. 25.
    J. Soman, T. Tao, and G. N. J. Phillips, Conformational variation of calcium-bound troponin C. Proteins 37(4), 510–511 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    M. E. Wall, J. B. Clarage, and G. N. Phillips, Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure 5(12), 1599–1612 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    T. M. A. Blumenschein, D. B. Stone, R. J. Fletterick, R. A. Mendelson, and B. D. Sykes, Calcium-dependent changes in the flexibility of the regulatory domain of troponin C in the troponin complex. J. Biol. Chem. 280(23), 21924–21932 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    T. M. A. Blumenschein, D. B. Stone, R. J. Fletterick, R. A. Mendelson, and B. D. Sykes, Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys. J. 90(7), 2436–2444 (2006).PubMedCrossRefGoogle Scholar
  29. 29.
    B. A. Shoemaker, J. J. Portman, and P. G. Wolynes, Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97(16), 8868–8873 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ryan M. B. Hoffman
    • 1
  • Brian D. Sykes
    • 1
  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations