Ca Ion and the Troponin Switch

  • Maia V. Vinogradova
  • Deborah B. Stone
  • Galina G. Malanina
  • Robert A. Mendelson
  • Robert J. Fletterick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


Muscle contraction as an event manifest by the sliding of myosin filaments along actin filaments was first proposed about fifty years ago by H. Huxley and J. Hanson (Huxley, 2004). This theory built a foundation for muscle research at the molecular level. A decade later the discovery of troponin by Professor S. Ebashi (Ebashi, 1963; Ebashi et al., 1967) highlighted the importance of regulation of muscle contraction and sparked numerous experimental studies of the mysterious protein troponin whose properties are now becoming understood at satisfying resolution.


Cardiac Troponin Protein Data Bank Entry Troponin Complex Myosin Subfragment High Resolution Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.7. References

  1. Abbott, M. B., Gaponenko, V., Abusamhadneh, E., Finley, N., Li, G., Dvoretsky, A., Rance, M., Solaro, R. J., and Rosevear, P. R., 2000, Regulatory domain conformational exchange and linker region flexibility in cardiac troponin C bound to cardiac troponin I, J. Biol. Chem. 275:20610–7.PubMedCrossRefGoogle Scholar
  2. Ebashi, S., 1960, Calcium binding and relaxation in the actomyosin system, J. Biochem. 48:150–9.Google Scholar
  3. Ebashi, S., 1963, Third component participating in the precipitation of “natural actomyosin”, Nature 200:1010–15.PubMedCrossRefGoogle Scholar
  4. Ebashi, S., Ebashi, F., and Kodama, A., 1967, Troponin as the Ca2+-receptive protein in the contractile system, J. Biochem. 62:137–8.PubMedGoogle Scholar
  5. Ferguson, R. E., Sun, Y. B., Mercier, P., Brack, A. S., Sykes, B. D., Corrie, J. E., Trentham D. R., and Irving, M., 2003, In situ orientations of protein domains: troponin C in skeletal muscle fibers, Mol. Cell 11:865–74.PubMedCrossRefGoogle Scholar
  6. Gaponenko, V., Abusamhadneh, E., Abbott, M. B., Finley, N., Gasmi-Seabrook, G., Solaro, R. J., Rance, M., and Rosevear, P. R., 1999, Effects of troponin I phosphorylation on conformational exchange in the regulatory domain of cardiac troponin C, J. Biol. Chem. 274:16681–4.PubMedCrossRefGoogle Scholar
  7. Gordon, A. M., Homsher, E., and Regnier, M., 2000, Regulation of contraction in striated muscle, Physiol. Rev. 80:853–924.PubMedGoogle Scholar
  8. Greaser, M. L., and Gergely, J., 1971, Reconstitution of troponin activity from three protein components, J. Biol. Chem. 246:4226–33.PubMedGoogle Scholar
  9. Herzberg, O., and James, M. N., 1988, Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution, J. Mol. Biol. 203:761–79.PubMedCrossRefGoogle Scholar
  10. Houdusse, A., Love, M. L., Dominguez, R., Grabarek, Z., and Cohen. C., 1997, Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily, Structure 5:1695–711.PubMedCrossRefGoogle Scholar
  11. Huxley, H. E., 2004, Fifty years of muscle and the sliding filament hypothesis, Eur. J. Biochem. 271:1403–15.PubMedCrossRefGoogle Scholar
  12. Kimura, C., Maeda, K., Maeda, Y., and Miki, M., 2002, Ca(2+)-and S1-induced movement of troponin T on reconstituted skeletal muscle thin filaments observed by fluorescence energy transfer spectroscopy, J. Biochem. (Tokyo) 132:93–102.Google Scholar
  13. King, W. A., Stone, D. B., Timmins, P. A., Narayanan, T., von Brasch, A. A., Mendelson, R. A., and Curmi. P. M., 2005, Solution structure of the chicken skeletal muscle troponin complex via small-angle neutron and X-ray scattering, J. Mol. Biol. 345:797–815.PubMedCrossRefGoogle Scholar
  14. Kobayashi, T., Kobayashi, M., and Collins, J. H., 2001, Ca(2+)-dependent, myosin subfragment 1-induced proximity changes between actin and the inhibitory region of troponin I, Biochim. Biophys. Acta 1549:148–54.PubMedGoogle Scholar
  15. Kobayashi, T., Kobayashi, M., Gryczynski, Z., Lakowicz, J. R., and Collins, J. H., 2000, Inhibitory region of troponin I: Ca(2+)-dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments, Biochemistry 39:86–91.PubMedCrossRefGoogle Scholar
  16. Lehman, W., Rosol, M., Tobacman, L. S., and Craig, R., 2001, Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction, J. Mol. Biol. 307:739–44.PubMedCrossRefGoogle Scholar
  17. Lehman, W., Vibert, P., Uman, P., and Craig, R., 1995, Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments, J. Mol. Biol. 251:191–6.PubMedCrossRefGoogle Scholar
  18. Li, Z., Gergely, J., and Tao, T., 2001, Proximity relationships between residue 117 of rabbit skeletal troponin-I and residues in troponin-C and actin, Biophys. J. 81:321–33.PubMedGoogle Scholar
  19. Luo, Y., Wu, J. L., Li, B., Langsetmo, K., Gergely, J., and Tao, T., 2000, Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins, J. Mol. Biol. 296:899–910.PubMedCrossRefGoogle Scholar
  20. McKillop, D. F., and Geeves, M. A., 1993, Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J. 65:693–701.PubMedGoogle Scholar
  21. Matsumoto, F., Makino, K., Maeda, K., Patzelt, H., Maeda, Y., and Fujiwara, S., 2004, Conformational changes of troponin C within the thin filaments detected by neutron scattering, J. Mol. Biol. 342:1209–21.PubMedCrossRefGoogle Scholar
  22. Maytum, R., Westerdorf, B., Jaquet, K., and Geeves, M. A., 2003, Differential regulation of the actomyosin interaction by skeletal and cardiac troponin isoforms, J. Biol. Chem. 278:6696–701.PubMedCrossRefGoogle Scholar
  23. Ngai, S. M., and Hodges, R. S., 2001, Structural and functional studies on Troponin I and Troponin C interactions, J. Cell. Biochem. 83:33–46.PubMedCrossRefGoogle Scholar
  24. Pearlstone, J. R., Sykes, B. D., and Smillie, L. B., 1997, Interactions of structural C and regulatory N domains of troponin C with repeated sequence motifs in troponin I, Biochemistry 36:7601–6.PubMedCrossRefGoogle Scholar
  25. Perry, S. V., 1998, Troponin T: genetics, properties and function, J. Muscle Res. Cell Motil. 19:575–602.PubMedCrossRefGoogle Scholar
  26. Perry, S. V., 1999, Troponin I: inhibitor or facilitator, Mol. Cell. Biochem. 190:9–32.PubMedCrossRefGoogle Scholar
  27. Potter, J. D., and Gergely, J., 1974, Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction, Biochemistry 13:2697–703.PubMedCrossRefGoogle Scholar
  28. Ramakrishnan, S., and Hitchcock-DeGregori, S. E., 1995, Investigation of the structural requirements of the troponin C central helix for function, Biochemistry 34:16789–96.PubMedCrossRefGoogle Scholar
  29. Satyshur, K. A., Rao, S. T., Pyzalska, D., Drendel, W., Greaser, M., and Sundaralingam, M., 1988, Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution, J. Biol. Chem. 263:1628–47.PubMedGoogle Scholar
  30. Sheng, Z. L., Francois, J. M., Hitchcock-DeGregori, S. E., and Potter, J. D., 1991, Effects of mutations in the central helix of troponin C on its biological activity, J. Biol. Chem. 266:5711–5.PubMedGoogle Scholar
  31. Slupsky, C. M., and Sykes, B. D., 1995, NMR solution structure of calcium-saturated skeletal muscle troponin C, Biochemistry 34:15953–603.PubMedCrossRefGoogle Scholar
  32. Stone, D. B., Timmins, P. A., Schneider, D. K., Krylova, I., Ramos, C. H., Reinach, F. C., and Mendelson, R. A., 1998, The effect of regulatory Ca2+ on the in situ structures of troponin I and troponin C: a neutron scattering study, J. Mol. Biol. 281:689–704.PubMedCrossRefGoogle Scholar
  33. Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y., 2003, Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form, Nature 424:35–41.PubMedCrossRefGoogle Scholar
  34. Van Eyk, J. E., Thomas, L. T., Tripet, B., Wiesner, R. J., Pearlstone, J. R., Farah, C. S., Reinach, F. C., and Hodges, R. S., 1997, Distinct regions of troponin I regulate Ca2+-dependent activation and Ca2+ sensitivity of the acto-S1-TM ATPase activity of the thin filament, J. Biol. Chem. 272:10529–37.PubMedCrossRefGoogle Scholar
  35. Vinogradova, M. V., Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R., Mendelson, R. A., and Fletterick, R. J., 2005, Ca(2+)-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA 102:5038–43.PubMedCrossRefGoogle Scholar
  36. Wang, X., Li, M. X., and Sykes, B. D., 2002, Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147–163 and bepridil, J. Biol. Chem. 277:31124–33.PubMedCrossRefGoogle Scholar
  37. Xu, C., Craig, R., Tobacman, L., Horowitz, R., and Lehman, W., 1999, Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy, Biophys. J. 77:985–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Maia V. Vinogradova
    • 1
  • Deborah B. Stone
    • 1
  • Galina G. Malanina
    • 1
  • Robert A. Mendelson
    • 1
  • Robert J. Fletterick
    • 1
  1. 1.Department of BiochemistryUCSFUSA

Personalised recommendations