Advertisement

Modeling of the F-Actin Structure

  • Toshiro Oda
  • Heiko Stegmann
  • Rasmus R. Schröder
  • Keiichi Namba
  • Yuichiro Maéda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)

Abstract

Actin has been a major target for structural studies in biology since F. B. Straub discovered it in 1942.1 This is probably because actin is one of the most abundant proteins in the eukaryotic cell as well as a key player in many physiological events, ranging from genetics to motility.

Keywords

Normal Mode Tobacco Mosaic Virus Atomic Model Tirion Model Bovine Pancreatic Trypsin Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

32.7. Refernce

  1. 1.
    F. B. Straub. Actin, Studies Int. Med. Chem. Univ. Szeged. 2, 3–15 (1942).Google Scholar
  2. 2.
    F. Straub, and G. Feuer. Adenosinetriphosphate the functional group of actin, Biochim. Biophys. Acta 4, 455–470 (1950).CrossRefGoogle Scholar
  3. 3.
    F. Oosawa, S. Asakura, K. Hotta, N. Imai, and T. Ooi. G-F transformation of actin as a fibrous condensation, J. Polymer Sci. 37(3), 323–336 (1959).CrossRefGoogle Scholar
  4. 4.
    F. Oosawa. Size distribution of protein polymers, J. Theor. Biol. 27(1), 69–86 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    D. T. Woodrum, S. A. Rich, and T. D. Pollard. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method, J. Cell Biol. 67(1), 231–237 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Kondo, and S. Ishiwata. Uni-directional growth of F-actin, J. Biochem. (Tokyo). 79(1), 159–171 (1976).Google Scholar
  7. 7.
    A. Wegner. Head to tail polymerization of actin, J. Mol. Biol. 108(1), 139–150 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Selve, and A. Wegner. Rate of treadmilling of actin filaments in vitro, J. Mol. Biol. 187(4), 627–631 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    M. F. Carlier, D. Pantaloni, and E. D. Korn. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state, J. Biol. Chem. 259(16), 9983–9986 (1984).PubMedGoogle Scholar
  10. 10.
    M. F. Carlier, D. Pantaloni, and E. D. Korn. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin, J. Biol. Chem. 262(7), 3052–3059 (1987).PubMedGoogle Scholar
  11. 11.
    S. Hatano, and F. Oosawa. Extraction of an actin-like protein from the plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle, J. Cell. Physiol. 68(2), 197–202 (1966).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Hatano, and F. Oosawa. Isolation and characterization of plasmodium actin, Biochim. Biophys. Acta 127(2), 488–498 (1966).PubMedGoogle Scholar
  13. 13.
    T. D. Pollard, and G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments, Cell. 112(4), 453–465 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    S. H. Zigmond. Formin-induced nucleation of actin filaments, Curr. Opin. Cell Biol. 16(1), 99–105 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    W. T. Astbury, S. V. Perry, R. Reed, and L. C. Spark. An electron microscopy and X-ray study of actin., Biochim. Biophys. Acta 1, 379–392 (1947).CrossRefGoogle Scholar
  16. 16.
    C. C. Selby, and R. S. Bear. The structure of actin-rich filaments of muscles according to X-ray diffraction, J. Biophys. Biochem. Cytol. 2(1), 71–85 (1956).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Cohen, and J. Hanson. An X-ray diffraction study of F-actin, Biochim. Biophys. Acta 21(1), 177–178 (1956).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Oosawa, S. Asakura, and T. Ooi. Physical Chemistry of muscle protein “actin,” Prog. Theor. Phys. Suppl. 17, 14–34 (1961).Google Scholar
  19. 19.
    F. Oosawa, and M. Kasai. A theory of linear and helical aggregations of macromolecules, J. Mol. Biol. 4, 10–21 (1962).PubMedGoogle Scholar
  20. 20.
    J. Hanson, and J. Lowy. The structure of F-actin of actin filaments isolated from muscle, J. Mol. Biol. 6, 46–60 (1963).Google Scholar
  21. 21.
    D. J. DeRosier, and A. Klug. Reconstruction of three dimensional structure from electron micrographs, Nature 217(5124), 130–134 (1968).CrossRefGoogle Scholar
  22. 22.
    P. B. Moore, H. E. Huxley, and D. J. DeRosier. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments, J. Mol. Biol. 50(2), 279–295 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Bremer, R. C. Millonig, R. Sutterlin, A. Engel, T. D. Pollard, and U. Aebi. The structural basis for the intrinsic disorder of the actin filament: the “lateral slipping” model, J. Cell Biol. 115(3), 689–703 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    E. H. Egelman, N. Francis, and D. J. DeRosier. F-actin is a helix with a random variable twist, Nature 298(5870), 131–135 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Trinick, J. Cooper, J. Seymour, and E. H. Egelman. cryo-electron microscopy and three-dimensional reconstruction of actin filament, J. Microsc. 141 (Pt 3), 349–360 (1986).PubMedGoogle Scholar
  26. 26.
    R. A. Milligan, M. Whittaker, and D. Safer. Molecular structure of F-actin and location of surface binding sites, Nature 348(6298), 217–221 (1990).PubMedCrossRefGoogle Scholar
  27. 27.
    E. H. Egelman. A robust algorithm for the reconstruction of helical filaments using single-particle methods, Ultramicroscopy 85(4), 225–234 (2000).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Narita, T. Yasunaga, T. Ishikawa, K. Mayanagi, and T. Wakabayashi. Ca(2+)-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy, J. Mol. Biol. 308(2), 241–261 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Paul, A. Patwardhan, J. M. Squire, and E. P. Morris. Single particle analysis of filamentous and highly elongated macromolecular assemblies, J. Struct. Biol. 148(2), 236–250 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    E. H. Egelman. Molecular evolution: actin’s long lost relative found, Curr. Biol. 11(24), R1022–R1024 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    W. Kabsch, H. G. Mannherz, D. Suck, E. F. Pai, and K. C. Holmes. Atomic structure of the actin:DNase I complex, Nature 347(6288), 37–44 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    K. C. Holmes, D. Popp, W. Gebhard, and W. Kabsch. Atomic model of the actin filament, Nature 347(6288), 44–49 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Lorenz, D. Popp, and K. C. Holmes. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm, J. Mol. Biol. 234(3), 826–836 (1993).PubMedCrossRefGoogle Scholar
  34. 34.
    M. M. Tirion, D. ben-Avraham, M. Lorenz, and K. C. Holmes. Normal modes as refinement parameters for the F-actin model, Biophys. J. 68(1), 5–12 (1995).PubMedGoogle Scholar
  35. 35.
    K. C. Holmes, I. Angert, F. J. Kull, W. Jahn, and R. R. Schroder. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide, Nature 425(6956), 423–427 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    X. Chen, R. K. Cook, and P. A. Rubenstein. Yeast actin with a mutation in the “hydrophobic plug” between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect, J. Cell Biol. 123(5), 1185–1195 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    R. Musib, G. Wang, L. Geng, and P. A. Rubenstein. Effect of polymerization on the subdomain 3/4 loop of yeast actin, J. Biol. Chem. 277(25), 22699–22709 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Shvetsov, R. Musib, M. Phillips, P. A. Rubenstein, and E. Reisler. Locking the hydrophobic loop 262–274 to G-actin surface by a disulfide bridge prevents filament formation, Biochemistry 41(35), 10787–10793 (2002).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Oda. Structural analysis of filamentous macromolecular complexes: in the case of actin filament, Seitai no kagaku 56(6), 581–587 (2005).Google Scholar
  40. 40.
    D. S. Kudryashov, M. R. Sawaya, H. Adisetiyo, T. Norcross, G. Hegyi, E. Reisler, and T. O. Yeates. The crystal structure of a cross-linked actin dimer suggests a detailed molecular interface in F-actin, Proc. Natl. Acad. Sci. USA 102(37), 13105–13110 (2005).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Gong, V. Hatch, L. Ali, W. Lehman, R. Craig, and L. S. Tobacman. Mini-thin filaments regulated by troponin-tropomyosin, Proc. Natl. Acad. Sci. USA 102(3), 656–661 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    K. C. Holmes. Solving the structure of macromolecular complexes with the help of X-ray fiber diffraction diagrams, J. Struct. Biol. 115(2), 151–158 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    D. L. D. Casper. The radial density distribution in the tobacco mosaic virus particle, Nature 177(4516), 928 (1956).CrossRefGoogle Scholar
  44. 44.
    R. E. Franklin. Location of the ribonucleic acid in the tabacco mosaic virus particles, Nature 177(4516), 928–930 (1956).CrossRefGoogle Scholar
  45. 45.
    K. C. Holmes, G. J. Stubbs, E. Mandelkow, and U. Gallwitz. structure of tobacco mosaic virus at 6.7 A resolution, Nature 254(5497), 192–196 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    G. Stubbs, S. Warren, and K. Holmes. Structure of RNA and RNA binding site in tobacco mosaic virus from 4-A map calculated from X-ray fibre diagrams, Nature 267(5608), 216–221 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    K. Namba, and G. Stubbs. Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly, Science 231(4744), 1401–1406 (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    K. Namba, R. Pattanayek, and G. Stubbs. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction, J. Mol. Biol. 208(2), 307–325 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    K. Namba, and G. Stubbs. Difference Fourier syntheses in fiber diffraction, Acta Cryst. A43 (Pt 4), 533–539 (1987).Google Scholar
  50. 50.
    K. Namba, and G. Stubbs. Solving the phase problem in fiber diffraction. Application to tobacco mosaic virus at 3.6 A resolution, Acta Cryst. A41 (Pt 3), 252–262 (1985).Google Scholar
  51. 51.
    V. V. Lednev. Structure and function of the thin filaments of the cross-striated muscle of vertebrates. structural parameters of F-actin, Biofizika 19(1), 116–121 (1974).PubMedGoogle Scholar
  52. 52.
    D. Popp, V. V. Lednev, and W. Jahn. Methods of preparing well-orientated sols of f-actin containing filaments suitable for X-ray diffraction, J. Mol. Biol. 197(4), 679–684 (1987).PubMedCrossRefGoogle Scholar
  53. 53.
    T. Oda, K. Makino, I. Yamashita, K. Namba, and Y. Maeda. Effect of the length and effective diameter of F-actin on the filament orientation in liquid crystalline sols measured by X-ray fiber diffraction, Biophys J. 75(6), 2672–2681 (1998).PubMedGoogle Scholar
  54. 54.
    I. Yamashita, F. Vonderviszt, Y. Mimori, H. Suzuki, K. Oosawa, and K. Namba. Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding, J. Mol. Biol. 253(4), 547–558 (1995).PubMedCrossRefGoogle Scholar
  55. 55.
    G. J. Stubbs, and R. Diamond. The phase problem for cylindrically averaged diffraction patterns. Solution by isomorphous replacement and application to tobacco mosaic virus, Acta Cryst. A31 (Pt 6), 709–718 (1975).Google Scholar
  56. 56.
    M. F. Smith, and J. P. Langmore. Quantitation of molecular densities by cryo-electron microscopy. Determination of the radial density distribution of tobacco mosaic virus, J. Mol. Biol. 226(3), 763–774 (1992).PubMedCrossRefGoogle Scholar
  57. 57.
    Y. Mimori, I. Yamashita, K. Murata, Y. Fujiyoshi, K. Yonekura, C. Toyoshima, and K. Namba. The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy, J. Mol. Biol. 249(1), 69–87 (1995).PubMedCrossRefGoogle Scholar
  58. 58.
    T. W. Jeng, R. A. Crowther, G. Stubbs, and W. Chiu. Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy, J. Mol. Biol. 205(1), 251–257 (1989).PubMedCrossRefGoogle Scholar
  59. 59.
    K. Namba, I. Yamashita, and F. Vonderviszt. Structure of the core and central channel of bacterial flagella, Nature 342(6250), 648–654 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    A. Klug, F. H. Crick, and H. W. Wyckoff. Diffraction by helical structure, Acta Cryst. 11 (Pt 3), 199–213 (1958).CrossRefGoogle Scholar
  61. 61.
    T. Oda, Z. D. Crane, C. W. Dicus, B. A. Sufi, and R. B. Bates. Dolastatin 11 connects two long-pitch strands in F-actin to stabilize microfilaments, J. Mol. Biol. 328(2), 319–324 (2003).PubMedCrossRefGoogle Scholar
  62. 62.
    D. L. D. Casper. The radial density distribution in the tobacco mosaic virus particle, Nature 177(4516),928 (1956).CrossRefGoogle Scholar
  63. 63.
    R. E. Franklin. Location of the ribonucleic acid in the tabacco mosaic virus particles, Nature 177, 928–930 (1956).CrossRefGoogle Scholar
  64. 64.
    A. Orlova, and E. H. Egelman. A conformational change in the actin subunit can change the flexibility of the actin filament, J. Mol. Biol. 232(2), 334–341 (1993).PubMedCrossRefGoogle Scholar
  65. 65.
    N. Go, T. Noguti, and T. Nishikawa. Dynamics of a small globular protein in terms of low-frequency vibrational modes, Proc. Natl. Acad. Sci. USA 80(12), 3696–3700 (1983).PubMedCrossRefGoogle Scholar
  66. 66.
    B. Brooks, and M. Karplus. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proc. Natl. Acad. Sci. USA 80(21), 6571–6575 (1983).PubMedCrossRefGoogle Scholar
  67. 67.
    M. M. Tirion. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Phys. Rev. Lett. 77(9), 1905–1908 (1996).PubMedCrossRefGoogle Scholar
  68. 68.
    I. Bahar, A. R. Atilgan, and B. Erman. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold Des. 2(3), 173–181 (1997).PubMedCrossRefGoogle Scholar
  69. 69.
    F. Tama, and Y. H. Sanejouand. Conformational change of proteins arising from normal mode calculations, Protein Eng. 14(1), 1–6 (2001).PubMedCrossRefGoogle Scholar
  70. 70.
    C. Xu, D. Tobi, and I. Bahar. Allosteric changes in protein structure computed by a simple mechanical model: hemoglobin T<->R2 transition, J. Mol. Biol. 333(1), 153–168 (2003).PubMedCrossRefGoogle Scholar
  71. 71.
    R. Diamond. On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor, Acta Crystallogr. A 46 (Pt 6), 425–435 (1990).PubMedCrossRefGoogle Scholar
  72. 72.
    A. Kidera, and N. Go. Normal mode refinement: crystallographic refinement of protein dynamic structure. I. Theory and test by simulated diffraction data, J. Mol. Biol. 225(2), 457–475 (1992).PubMedCrossRefGoogle Scholar
  73. 73.
    Y. Wu, and J. Ma. Refinement of F-actin model against fiber diffraction data by long-range normal modes, Biophys J. 86(1 Pt 1), 116–124 (2004).PubMedCrossRefGoogle Scholar
  74. 74.
    F. Tama, M. Valle, J. Frank, and C. L. Brooks, 3rd. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy, Proc. Natl. Acad. Sci. USA 100(16), 9319–9323 (2003).PubMedCrossRefGoogle Scholar
  75. 75.
    H. Wang, and G. Stubbs. Molecular dynamics in refinement against fiber diffraction data, Acta Crystallogr A 49(3), 504–513 (1993).PubMedCrossRefGoogle Scholar
  76. 76.
    L. R. Otterbein, P. Graceffa, and R. Dominguez. The crystal structure of uncomplexed actin in the ADP state, Science 293(5530), 708–711 (2001).PubMedCrossRefGoogle Scholar
  77. 77.
    J. K. Chik, U. Lindberg, and C. E. Schutt. The structure of an open state of beta-actin at 2.65 A resolution, J. Mol. Biol. 263(4), 607–623 (1996).PubMedCrossRefGoogle Scholar
  78. 78.
    C. E. Schutt, J. C. Myslik, M. D. Rozycki, N. C. Goonesekere, and U. Lindberg. The structure of crystalline profilin-beta-actin, Nature 365(6449), 810–816 (1993).PubMedCrossRefGoogle Scholar
  79. 79.
    R. Page, U. Lindberg, and C. E. Schutt. Domain motions in actin, J. Mol. Biol. 280(3), 463–474 (1998).PubMedCrossRefGoogle Scholar
  80. 80.
    F. van den Ent, J. Moller-Jensen, L. A. Amos, K. Gerdes, and J. Lowe. F-actin-like filaments formed by plasmid segregation protein ParM, EMBO J. 21(24), 6935–6943 (2002).PubMedCrossRefGoogle Scholar
  81. 81.
    F. van den Ent, L. A. Amos, and J. Lowe. Prokaryotic origin of the actin cytoskeleton, Nature 413(6851), 39–44 (2001).PubMedCrossRefGoogle Scholar
  82. 82.
    P. J. Kraulis. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures, J. Appl. Cryst 24(5), 946–950 (1991).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Toshiro Oda
    • 1
    • 2
  • Heiko Stegmann
    • 3
  • Rasmus R. Schröder
    • 4
  • Keiichi Namba
    • 5
    • 6
  • Yuichiro Maéda
    • 1
    • 2
    • 7
  1. 1.RIKEN Harima InstituteRIKEN SPring-8 centerSayo, HyogoJapan
  2. 2.Actin-filament dynamics projectERATO, JSTSayo, HyogoJapan
  3. 3.Carl Zeiss NTS GmbHOberkochen
  4. 4.Max-Planck Institute of BiophysicsFrankfurt am MainGermany
  5. 5.Graduate School of Frontier BiosciencesOsaka UniversitySuita, OsakaJapan
  6. 6.Dynamic NanoMachine projectICORP, JSTSuita, OsakaJapan
  7. 7.Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations