Advertisement

On the Walking Mechanism of Linear Molecular Motors

  • Kazuhiko KinositaJr.
  • Katsuyuki Shiroguchi
  • M. Yusuf Ali
  • Kengo Adachi
  • Hiroyasu Itoh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)

Abstract

Many of linear molecular motors, such as myosins and kinesins, have two “feet” (traditionally called “heads” or “motor domains”) that bind to a motor-specific track and that each host a catalytic site for hydrolyzing ATP to power unidirectional movement along the track (Kinosita et al., 1998, 2005; Vale and Milligan, 2000; Mehta, 2001; Endow and Barker, 2003; Schliwa and Woehlke, 2003; Vale, 2003; Sablin and Fletterick, 2004). Some of the linear motors, such as conventional kinesin (Brady, 1985; Vale et al., 1985; Howard et al., 1989; Block et al., 1990; Svoboda et al., 1993), myosin V (Cheney et al., 1993; Mehta et al., 1999; Sakamoto et al., 2000), myosin VI (Kellerman and Miller, 1992; Wells et al., 1999; Rock et al., 2001; Nishikawa et al., 2002), and plant myosin XI (Tominaga et al., 2003), are processive, in that a single motor molecule proceeds along a filamentous track for many ATPase cycles without detaching from the track. That the two feet never detach simultaneously from the track (or the ground in case of a human) is an important feature of “walking,” as opposed to “running” (Kinosita et al., 1998). In addition, at least for myosin V and conventional kinesin which are known to be processive, convincing evidence exists that these motors throw their two feet forward alternately in a hand-over-hand fashion (Yildiz et al., 2003, 2004; Asbury et al., 2003; Kaseda et al., 2003; Warshaw et al., 2005), just as a human does.

Keywords

Landing Site Molecular Motor Lever Action Coiled Coil Myosin Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

31.6. References

  1. Ali, M. Y., Uemura, S., Adachi, K., Itoh, H., Kinosita, K. Jr., and Ishiwata, S., 2002, Myosin V is a left-handed spiral motor on the right-handed actin helix, Nat. Struct. Biol. 9:464–467.PubMedCrossRefGoogle Scholar
  2. Ali, M. Y., Homma, K., Iwane, A. H., Adachi, K., Itoh, H., Kinosita, K. Jr., Yanagida, T., and Ikebe, M., 2004, Unconstrained steps of myosin VI appear longest among known molecular motors, Biophys. J. 86: 3804–3810.PubMedCrossRefGoogle Scholar
  3. Altman, D., Sweeney, H. L., and Spudich, J. A., 2004, The mechanism of myosin VI translocation and its load-induced anchoring, Cell 116:737–749.PubMedCrossRefGoogle Scholar
  4. Asbury, C. L., Fehr, A. N., and Block, S. M., 2003, Kinesin moves by an asymmetric hand-over-hand mechanism, Science 302:2130–2134.PubMedCrossRefGoogle Scholar
  5. Block, S. M., Goldstein, L. S. B., and Schnapp, B. J., 1990, Bead movement by single kinesin molecules studied with optical tweezers, Nature 348:348–352.PubMedCrossRefGoogle Scholar
  6. Brady, S. T., 1985, A novel brain ATPase with properties expected for the fast axonal transport motor, Nature 317:73–75.PubMedCrossRefGoogle Scholar
  7. Burgess, S., Walker, M., Wang, F., Sellers, J. R., White, H. D., Knight, P. J., and Trinick, J., 2002, The prepower stroke conformation of myosin V, J. Cell Biol. 159:983–991.PubMedCrossRefGoogle Scholar
  8. Carter, N. J., and Cross, R. A., 2005, Mechanics of the kinesin step, Nature 435:308–312.PubMedCrossRefGoogle Scholar
  9. Cheney, R. E., O’Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., Espreafico, E. M., Forscher, P., Larson, R. E., and Mooseker, M. S., 1993, Brain myosin-V is a two-headed unconventional myosin with motor activity, Cell 75:13–23.PubMedGoogle Scholar
  10. Clemen, A. E.-M., Vilfan, M., Jaud, J., Zhang, J., Bärmann, M., and Rief, M., 2005, Force-dependent stepping kinetics of myosin-V, Biophys. J., 88:4402–4410.PubMedCrossRefGoogle Scholar
  11. Coureux, P.-D., Sweeney, H. L., and Houdusse, A., 2004, Three myosin V structures delineate essential features of chemo-mechanical transduction, EMBO J. 23:4527–4537.PubMedCrossRefGoogle Scholar
  12. Coureux, P.-D., Wells, A. L., Ménétrey, J., Yengo, C. M., Morris, C. A., Sweeney, H. L., and Houdusse, A., 2003, A structural state of the myosin V motor without bound nucleotide, Nature 425:419–423.PubMedCrossRefGoogle Scholar
  13. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M., and Sweeney, H. L., 1999, The kinetic mechanism of myosin V, Proc. Natl. Acad. Sci. USA 96:13726–13731.CrossRefGoogle Scholar
  14. Endow, S. A., and Barker, D. S., 2003, Processive and nonprocessive models of kinesin movement, Annu. Rev. Physiol. 65:161–175.PubMedCrossRefGoogle Scholar
  15. Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E. T., and Goldman, Y. E., 2003, Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization, Nature 422:399–404.PubMedCrossRefGoogle Scholar
  16. Hackney, D. D., 1994, Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis, Proc. Natl. Acad. Sci. USA 91:6865–6869.PubMedCrossRefGoogle Scholar
  17. Hancock, W. O., and Howard, J., 1999, Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains, Proc. Natl. Acad. Sci. USA 96: 13147–13152.PubMedCrossRefGoogle Scholar
  18. Holmes, K. C., Angert, I., Kull, F. J., Jahn, W., and Schröder, R. R., 2003, Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide, Nature 425:423–427.PubMedCrossRefGoogle Scholar
  19. Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Györgyi, A. G., and Cohen, C., 1999, Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head, Cell 97, 459–470.PubMedCrossRefGoogle Scholar
  20. Houdusse, A., Szent-Györgyi, A. G., and Cohen, C., 2000, Three conformational states of scallop myosin S1, 2000, Proc. Natl. Acad. Sci. USA 97, 11238–11243.PubMedCrossRefGoogle Scholar
  21. Howard, J., Hudspeth, A. J., Vale, R. D., 1989, Movement of microtubules by single kinesin molecules, Nature 342:154–158.PubMedCrossRefGoogle Scholar
  22. Howard, J., 1996, The movement of kinesin along microtubules, Annu. Rev. Physiol. 58:703–729.PubMedCrossRefGoogle Scholar
  23. Hua, W., Chung, J., and Gelles, J., 2002, Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements, Science 295:844–848.PubMedCrossRefGoogle Scholar
  24. Huxley, A. F., and Simmons, R. M., 1971, Proposed mechanism of force generation in striated muscle, Nature 233:533–538.PubMedCrossRefGoogle Scholar
  25. Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356–1366.PubMedCrossRefGoogle Scholar
  26. Inoue, A., Saito, J., Ikebe, R., and Ikebe, M., 2002, Myosin IXb is a single-headed minus-end-directed processive motor, Nat. Cell Biol. 4:302–306.PubMedCrossRefGoogle Scholar
  27. Ishiwata, S., Kinosita, K. Jr., Yoshimura, H., and Ikegami, A., 1987, Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements, J. Biol. Chem. 262: 8314–8317.PubMedGoogle Scholar
  28. Kaseda, K., Higuchi, H., and Hirose, K., 2003, Alternate fast and slow stepping of a heterodimeric kinesin molecule, Nat. Cell Biol. 5:1079–1082.PubMedCrossRefGoogle Scholar
  29. Kawaguchi, K., and Ishiwata, S., 2001, Nucleotide-dependent single-to double-headed binding of kinesin, Science 291:667–669.PubMedCrossRefGoogle Scholar
  30. Kellerman, K. A., and Miller, K. G., 1992, An unconventional myosin heavy chain gene from Drosophila melanogaster, J. Cell Biol. 119:823–834.PubMedCrossRefGoogle Scholar
  31. Kinosita, K. Jr., Ishiwata, S., Yoshimura, H., Asai, H., and Ikegami, A., 1984, Submicrosecond and microsecond rotational motions of myosin head in solution and in myosin synthetic filaments as revealed by time-resolved optical anisotropy decay measurements, Biochemistry 23:5963–5975.CrossRefGoogle Scholar
  32. Kinosita, K. Jr., Yasuda, R., Noji, H., Ishiwata, S., and Yoshida, M., 1998, F1-ATPase: a rotary motor made of a single molecule, Cell 93:21–24.PubMedCrossRefGoogle Scholar
  33. Kinosita, K. Jr., Adachi, K., and Itoh, H., 2004, Rotation of F1-ATPase: how an ATP-driven molecular machine may work, Annu. Rev. Biophys. Biomol. Struct. 33:245–268.PubMedCrossRefGoogle Scholar
  34. Kinosita, K. Jr., Ali, M. Y., Adachi, K., Shiroguchi, K., and Itoh, H., 2005, How two-foot molecular motors may walk, Adv. Exp. Med. Biol. 565:205–219.PubMedCrossRefGoogle Scholar
  35. Kozielski, F., Sack, S., Marx, A., Thormählen, M., Schönbrunn, E., Biou, V., Thompson, A., Mandelkow, E.-M., and Mandelkow, E., 1997, The crystal structure of dimeric kinesin and implications for microtubule-dependent motility, Cell 91:985–994.PubMedCrossRefGoogle Scholar
  36. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., and Vale, R. D., 1996, Crystal structure of the kinesin motor domain reveals a structural similarity to myosin, Nature 380:550–555.PubMedCrossRefGoogle Scholar
  37. Li, Y., Brown, J. H., Reshetnikova, L., Blazsek, A., Farkas, L., Nyitray, L., and Cohen, C., 2003, Visualization of an unstable coiled coil from the scallop myosin rod, Nature 424:341–345.PubMedCrossRefGoogle Scholar
  38. Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., and Cheney, R. E., 1999, Myosin-V is a processive actin-based motor, Nature 400:590–593.PubMedCrossRefGoogle Scholar
  39. Mehta, A., 2001, Myosin learns to walk, J. Cell Sci. 114:1981–1998.PubMedGoogle Scholar
  40. Ménétrey, J., Bahloul, A., Wells, A. L., Yengo, C. M., Morris, C. A., Sweeney, H. L., and Houdusse, A., 2005, The structure of the myosin VI motor reveals the mechanism of directionality reversal, Nature 435: 779–785.PubMedCrossRefGoogle Scholar
  41. Moore, J. R., Krementsova, E. B., Trybus, K. M., and Warshaw, D. M., 2001, Myosin V exhibits a high duty cycle and large unitary displacement, J. Cell Biol. 155:625–635.PubMedCrossRefGoogle Scholar
  42. Nishikawa, S., Homma, K., Komori, Y., Iwaki, M., Wazawa, T., Iwane, A. H., Saito, J., Ikebe, R., Katayama, E., Yanagida, T., and Ikebe, M., 2002, Class VI myosin moves processively along actin filaments backward with large steps, Biochem. Biophys. Res. Commun. 290:311–317.PubMedCrossRefGoogle Scholar
  43. Nitta, R., Kikkawa, M., Okada, Y., and Hirokawa, N., 2004, KIF1A alternately uses two loops to bind microtubules, Science 305:678–683.PubMedCrossRefGoogle Scholar
  44. Okada, Y., Higuchi, H., and Hirokawa, N., 2003, Processivity of the single-headed kinesin KIF1A through biased binding to tubulin, Nature 424:574–577.PubMedCrossRefGoogle Scholar
  45. Purcell, E. M., 1976, Life at low Reynolds number, http://brodylab.eng.uci.edu/~jpbrody/reynolds/lowpurcell.html.Google Scholar
  46. Purcell, T. J., Sweeney, H. L., and Spudich, J. A., 2005, A force-dependent state controls the coordination of processive myosin V, Proc. Natl. Acad. Sci. USA 102:13873–13878.PubMedCrossRefGoogle Scholar
  47. Rayment, I., Rypniewski, W. R., Schmidt-Bäse, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M., 1993, Three-dimensional structure of myosin subfragment-1: a molecular motor, Science 261:50–58.PubMedCrossRefGoogle Scholar
  48. Reedy, M. K., Holmes, K. C., and Tregear, R. T., 1965, Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle, Nature 207:1276–1280.PubMedCrossRefGoogle Scholar
  49. Rice, S., Cui, Y., Sindelar, C., Naber, N., Matuska, M., Vale, R., and Cooke, R., 2003, Thermodynamic properties of the kinesin neck-region docking to the catalytic core, Biophys. J. 84:1844–1854.PubMedCrossRefGoogle Scholar
  50. Rice, S., Lin, A. W., Safer, D., Hart, C. L., Naber, N., Carragher, B. O., Cain, S. M., Pechatnikova, E., Wilson-Kubalek, E. M., Whittaker, M., Pate, E., Cooke, R., Taylor, E. W., Milligan, R. A., and Vale, R. D., 1999, A structural change in the kinesin motor protein that drives motility, Nature 402:778–784.PubMedCrossRefGoogle Scholar
  51. Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E., and Spudich, J. A., 2000, Myosin-V stepping kinetics: A molecular model for processivity, Proc. Natl. Acad. Sci. USA 97:9482–9486.PubMedCrossRefGoogle Scholar
  52. Rock, R. S., Ramamurthy, B., Dunn, A. R., Beccafico, S., Rami, B. R., Morris, C., Spink, B. J., Franzini-Armstrong, C., Spudich, J. A., and Sweeney, H. L., 2005, A flexible domain is essential for the large step size and processivity of myosin VI, Mol. Cell 17:603–609.PubMedCrossRefGoogle Scholar
  53. Rock, R. S., Rice, S. E., Wells, A. L., Purcell, T. J., Spudich, J. A., and Sweeney, H. L., 2001, Myosin VI is a processive motor with a large step size, Proc. Natl. Acad. Sci. USA 98:13655–13659.PubMedCrossRefGoogle Scholar
  54. Sablin, E. P., and Fletterick, R. J., 2004, Coordination between motor domains in processive kinesins, J. Biol. Chem. 279:15707–15710.PubMedCrossRefGoogle Scholar
  55. Sakamoto, T., Amitani, I., Yokota, E., and Ando, T., 2000, Direct observation of processive movement by individual myosin V molecules, Biochem. Biophys. Res. Commun. 272:586–590.PubMedCrossRefGoogle Scholar
  56. Schliwa, M., and Woehlke, G., 2003, Molecular motors, Nature 422:759–765.PubMedCrossRefGoogle Scholar
  57. Shiroguchi, K., and Kinosita, K. Jr., 2005, Watching leg motion in walking myosin V, Biophys. J. 88: 205A–205A.Google Scholar
  58. Svoboda, K., Schmidt, C. F., Schnapp, B. J., and Block, S. M., 1993, Direct observation of kinesin stepping by optical trapping interferometry, Nature 365:721–727.PubMedCrossRefGoogle Scholar
  59. Tominaga, M., Kojima, H., Yokota, E., Orii, H., Nakamori, R., Katayama, E., Anson, M., Shimmen, T., and Oiwa, K., 2003, Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity, EMBO J. 22:1263–1272.PubMedCrossRefGoogle Scholar
  60. Tsiavaliaris, G., Fujita-Becker, S., and Manstein, D. J., 2004, Molecular engineering of a backwards-moving myosin motor, Nature 427:558–561.PubMedCrossRefGoogle Scholar
  61. Turner, J., Anderson, R., Guo, J., Beraud, C., Fletterick, R., and Sakowicz, R., 2001, Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker, J. Biol. Chem. 276: 25496–25502.PubMedCrossRefGoogle Scholar
  62. Uemura, S., and Ishiwata, S., 2003, Loading direction regulates the affinity of ADP for kinesin, Nat. Struct. Biol. 10:308–311.PubMedCrossRefGoogle Scholar
  63. Uemura, S., Kawaguchi, K., Yajima, J., Edamatsu, M., Toyoshima, Y. Y., and Ishiwata, S., 2002, Kinesin-microtubule binding depends on both nucleotide state and loading direction, Proc. Natl. Acad. Sci. USA 99:5977–5981.PubMedCrossRefGoogle Scholar
  64. Vale, R. D., 2003, Myosin V motor proteins: marching stepwise towards a mechanism, J. Cell Biol., 163: 445–450.PubMedCrossRefGoogle Scholar
  65. Vale, R. D., Reese, T. S., and Sheetz, M. P., 1985, Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility, Cell 42:39–50.PubMedCrossRefGoogle Scholar
  66. Vale, R. D., and Milligan, R. A., 2000, The way things move: looking under the hood of molecular motor proteins, Science 288:88–95.PubMedCrossRefGoogle Scholar
  67. Veigel, C., Schmitz, S., Wang, F., and Sellers, J. R., 2005, Load-dependent kinetics of myosin-V can explain its high processivity, Nat. Cell Biol. 7:861–869.PubMedCrossRefGoogle Scholar
  68. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R., and Molloy, J. E., 2002, The gated gait of the processive molecular motor, myosin V, Nat. Cell Biol. 4:59–65.PubMedCrossRefGoogle Scholar
  69. Visscher, K., Schnitzer, M. J., and Block, S. M., 1999, Single kinesin molecules studied with a molecular force clamp, Nature 400:184–189.PubMedCrossRefGoogle Scholar
  70. Walker, M. L., Burgess, S. A., Sellers, J. R., Wang, F., Hammer, J. A., Trinick, J., and Knight, P. J., 2000, Two-headed binding of a processive myosin to F-actin, Nature 405:804–807.PubMedCrossRefGoogle Scholar
  71. Warshaw, D. M., Kennedy, G. G., Work, S. S., Krementsova, E. B., Beck, S., and Trybus, K. M., 2005, Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity, Biophys. J. 88:L30–L32.PubMedCrossRefGoogle Scholar
  72. Wells, A. L., Lin, A. W., Chen, L.-Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A., and Sweeney, H. L., 1999, Myosin VI is an actin-based motor that moves backwards, Nature 401:505–508.PubMedCrossRefGoogle Scholar
  73. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr., and Itoh, H., 2001, Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase, Nature 410:898–904.PubMedCrossRefGoogle Scholar
  74. Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., and Selvin, P. R., 2003, Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization, Science 300:2061–2065.PubMedCrossRefGoogle Scholar
  75. Yildiz, A., Tomishige, M., Vale, R. D., and Selvin, P. R., 2004, Kinesin walks hand-over-hand, Science 303: 676–678.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kazuhiko KinositaJr.
    • 1
  • Katsuyuki Shiroguchi
    • 1
  • M. Yusuf Ali
    • 2
  • Kengo Adachi
    • 1
  • Hiroyasu Itoh
    • 3
    • 4
  1. 1.Department of Physics, Faculty of Science and TechnologyWaseda UniversityTokyoJapan
  2. 2.Department of Physics, Faculty of Physical SciencesShahjalal University of Science and TechnologySylhetBangladesh
  3. 3.Tsukuba Research LaboratoryHamamatsu Photonics KKJapan
  4. 4.CREST “Creation and Application of Soft Nano-Machine, the Hyperfunctional Molecular Machine” Team 13*Tokodai, TsukubaJapan

Personalised recommendations