Skip to main content

Highlights of the History of Calcium Regulation of Striated Muscle

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

  • 1592 Accesses

Abstract

First of all, I should like to express my gratitude for the invitation, making it possible for me to participate in the celebration of the fortieth anniversary of the discovery of troponin by Professor Ebashi and his colleagues. This discovery opened up new vistas of the regulation of striated muscle contraction and the role of ionized calcium in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.6. References

  1. H. Kumagai, S. Ebashi, and F. Takeda, Essential relaxing factor in muscle other than myokinase and creatine phosphokinase, Nature 176, 166 (1955).

    Article  PubMed  CAS  Google Scholar 

  2. B. B. Marsh, A factor modifying muscle fibre syneresis, Nature 167, 1065–1066 (1951).

    Article  PubMed  CAS  Google Scholar 

  3. B. B. Marsh, The effects of adenosine triphosphate on the fibre volume of a muscle homogenate, Biochim. Biophys. Acta 9, 247–260 (1952).

    Article  PubMed  CAS  Google Scholar 

  4. W. W. Kielley, and O. Meyerhof, A new magnesium-activated adenosinetriphosphatase from muscle, J. Biol. Chem. 174, 387–388 (1948).

    CAS  PubMed  Google Scholar 

  5. W. W. Kielley, and O. Meyerhof, Studies on adenosinetriphosphatase from muscle. II. A new magnesium-activated adenosinetriphosphatase, J. Biol. Chem. 176, 591–601 (1948).

    CAS  PubMed  Google Scholar 

  6. W. W. Kielley, and O. Meyerhof, Studies on adenosinetriphosphatase from muscle. III, The lipoprotein nature of the magnesium-activated adenosinetriphosphatase, J. Biol. Chem. 183, 391–401 (1950).

    CAS  Google Scholar 

  7. A. Weber, On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin, J. Biol. Chem. 234, 2764–2769 (1959).

    PubMed  CAS  Google Scholar 

  8. A. Weber, and S. Winicur, The role of calcium in the superprecipitation of myosin, J. Biol. Chem. 236, 3198–3202 (1961).

    PubMed  CAS  Google Scholar 

  9. S. Ebashi, and F. Lipmann, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell. Biol. 14, 389–400 (1962).

    Article  CAS  PubMed  Google Scholar 

  10. W. Hasselbach, and M. Makinose, The calcium pump of the relaxing granules of muscle and its dependence on ATP-splitting, Biochem. Z. 196, 518–528 (1961).

    Google Scholar 

  11. K. R. Porter, The sarcoplasmic reticulum. Its recent history and present status, J. Biophys. Biochem. Cytol. 10, 219–226 (1961).

    Article  PubMed  Google Scholar 

  12. K. Bailey, Tropomyosin: a new asymmetric protein of muscle, Nature 57, 368–369 (1946).

    Google Scholar 

  13. J. Hanson, and J. Lowy, The structure of F-actin and of actin filaments isolated from muscle, J. Mol. Biol. 6, 46–60 (1963).

    CAS  Google Scholar 

  14. S. Ebashi, Third component participating in the superprecipitation of ‘natural actomyosin’. Nature (London) 200, 1010 (1963).

    Article  CAS  Google Scholar 

  15. S. Ebashi, and A. Kodama, A new protein factor promoting aggregation of tropomyosin, J. Biochem. (Tokyo) 58, 107–108 (1965)

    CAS  Google Scholar 

  16. S. Ebashi, and A. Kodama, Interaction of troponin with F-actin in the presence of tropomyosin, J. Biochem. (Tokyo) 59, 425–426 (1966).

    CAS  Google Scholar 

  17. S. Ebashi, F. Ebashi, and A. Kodama, Troponin as the Ca2+ receptive protein in the contractile system, J. Biochem. (Tokyo) 62, 137–138, (1965).

    Google Scholar 

  18. I. Ohtsuki, T. Masaki, Y. Nonomura, and S. Ebashi, Periodic distribution of troponin along the thin filament, J. Biochem. 61, 817–819 (1967)

    CAS  Google Scholar 

  19. S. Ebashi, and M. Endo, Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  20. S. Ebashi, M. Endo, and I. Ohtsuki, Control of muscle contraction. Q. Rev. Biophys. 2, 351–384 (1969).

    PubMed  CAS  Google Scholar 

  21. A. Weber, Energized calcium transport and relaxing factors, in: Current Topics in Bioenergetics, Vol. 1, edited by D. R. Sanadi (New York, Academic Press, 1966), pp. 203–249.

    Google Scholar 

  22. D. J. Hartshorne, and H. Mueller, Fractionation of troponin into two distinct proteins. Biochem. Biophys. Res. Commun. 31, 647–653 (1968).

    Article  PubMed  CAS  Google Scholar 

  23. M. C. Schaub, and S. V. Perry, The relaxing factor system of striated muscle. Resolution of the troponin complex into inhibitory and calcium ion-sensitizing factors and their relatonship to tropomyosin, Biochem. J. 115, 993–1004 (1969).

    PubMed  CAS  Google Scholar 

  24. S. Ebashi, T. Wakabayashi, and F. Ebashi, Troponin and its components, J. Biochem. (Tokyo) 69, 441–445 (1971).

    CAS  Google Scholar 

  25. M. L. Greaser, and J. Gergely, Reconstitution of troponin activity from three protein components, J. Biol. Chem. 246, 4226–4233 (1971).

    PubMed  CAS  Google Scholar 

  26. M. L. Greaser, and J. Gergely, Purification and properties of the components from troponin, J. Biol. Chem. 248, 2125–2133 (1973).

    PubMed  CAS  Google Scholar 

  27. J. H. Collins, J. D. Potter, M. J. Wilshire, and N. Jackman, The amino acid sequence of rabbit skeletal muscle: gene replication and homology with Ca-binding proteins from carp and hake muscle, FEBS Lett. 36, 268–272 (1973).

    Article  PubMed  CAS  Google Scholar 

  28. C. E. Nockolds, R. H. Kretsinger, C. E, Coffee, and R. A. Bradshaw, Structure of a calcium-binding carp protein, Proc. Natl. Acad. Sci. USA 69, 581–584 (1972).

    Article  PubMed  CAS  Google Scholar 

  29. R. H. Kretsinger, and C. E. Nockolds, Carp muscle and calcium binding proteins II. Structure determination and general description, J. Biol. Chem. 248, 3313–3316 (1973).

    PubMed  CAS  Google Scholar 

  30. J. D. Potter, and J. Gergely, Troponin, tropomyosin and actin interactions in the Ca2+ regulation of muscle contrction, Biochemistry 13, 2697–2703 (1974).

    Article  PubMed  CAS  Google Scholar 

  31. J. D. Potter, and J. Gergely, The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase, J. Biol. Chem. 250, 4628–4633 (1975).

    PubMed  CAS  Google Scholar 

  32. W. Drabikowski, Z. Grabarek, and B. Barylko, Degradation of the Tn-C component of troponin by trypsin, Biochim. Biophys. Acta 490, 216–224 (1977).

    PubMed  CAS  Google Scholar 

  33. P. C. Leavis, S. S. Rosenfeld, J. Gergely, Z. Grabarek, and W. Drabikowski, Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T, J. Biol. Chem. 253, 5452–5459 (1978).

    PubMed  CAS  Google Scholar 

  34. I. L. Sin, R. Fernandes, and D. Mercola, Direct identification of the high and low affinity calcium binding sites of troponin-C, Biochem. Biophys. Res. Commun. 82, 1132–1139 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. H. Syska, J. M. Wilkinson, R. J. Grand, and S. V. Perry, The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit, Biochem. J. 153, 375–387 (1976).

    PubMed  CAS  Google Scholar 

  36. J. A. Talbot, and R. S. Hodges, Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship of amino acid sequence to biological activity, J. Biol. Chem. 256, 2798–2802 (1981).

    PubMed  CAS  Google Scholar 

  37. P. C. Leavis, and J. Gergely, Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction, Crit. Rev. Biochem. Mol. Biol. 16, 235–305 (1984).

    CAS  Google Scholar 

  38. I. Ohtsuki, K. Maruyama, and S. Ebashi, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle, in: Advances in Protein Chemistry, Vol. 38, edited by C. B. Anfinsen, J. T. Edsall, and F. M. Richards (Academic Press, Inc. Orlando, 1986), pp. 1–68.

    Google Scholar 

  39. O. Herzberg, and M. N. James, Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313, 653–659 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. M. Sundaralingam, R. Bergstrom, and G. Strasburg, Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution, Science 227, 945–948 (1985)

    Article  PubMed  CAS  Google Scholar 

  41. R. H. Kretsinger, and C. D. Barry, The predicted structure of the calcium-binding component of troponin, Biochim. Biophys. Acta 405, 40–52 (1975).

    PubMed  CAS  Google Scholar 

  42. O. Herzberg, J. Moult, and M. N. James, A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction, J. Biol. Chem. 261, 2638–2644 (1986).

    PubMed  CAS  Google Scholar 

  43. Z. Grabarek, R. Y. Tan, J. Wang, T. Tao, and J. Gergely, Inhibition of mutant troponin C activity by an intra-domain disulphide bond, Nature 345, 132–135 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. K. Fujimori, M. Sorenson, O. Herzberg, J. Moult, and F. C. Reinach, Probing the calcium-induced conformational transition of troponin C with site-directed mutants [see comments], Nature 345, 182–184 (1990)

    Article  PubMed  CAS  Google Scholar 

  45. S. K. Sia, M. X. Li, L. Spyracopoulos, S. M. Gagne, W. Liu, J. A. Putkey, B. C. Sykes, Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain, J. Biol. Chem. 272, 18216–18221 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. A. M. Gordon, E. Homsher, and M. Regnier, Regulation of contraction in striated muscle, Physiol. Rev. 80, 853–924 (2000).

    PubMed  CAS  Google Scholar 

  47. H. C. Cheung, Calcium-induced molecular and structural signaling in striated muscle contraction, in: Molecular Control Mechanisms in Striated Muscle Contraction, edited by R. J. Solaro, and R. L. L. Moss (Kluwer Acad. Publishers, Dordrecht, 2002), pp. 199–246.

    Google Scholar 

  48. R. T. McKay, B. P. Tripet, J. R. Pearlstone, L. B. Smilley, and B. D. Sykes, Defining the region of troponin-I that binds to troponin-C, Biochemistry 38, 5478–5489 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. B. P. Tripet, J. E. Van Eyk, and R. S. Hodges, Mapping of a second actin tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction, J. Mol. Biol. 271, 728–750 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. Y. Luo, J. L. Wu, B. Li, K. Langsetmo, J. Gergely, and T. Tao, Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins, J. Mol. Biol. 296, 899–910 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. D. G. Vassylyev, S. Takeda, S. Wakatsuki, K. Maeda, and Y. Maeda, Crystal structure of troponin C in complex with troponin I fragment at 2.3A resolution, Proc. Natl. Acad. Sci. USA 95, 4847–4852 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature 424, 35–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. R. Stefancsik, P. K. Jha, and S. Sarkar, Identification and mutageness of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction, Proc. Natl. Acad. Sci. USA 96, 957–962 (1998).

    Article  Google Scholar 

  54. M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, R. J. Fletterick, Ca2+-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA 102, 5038–5043 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. K. Murakami, F. Yumoto, S. Y. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol. 352, 178–201 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. H. E. Huxley, Structural changes in the actin-and myosin-containing filaments during contraction, Cold Spring Harb. Symp. Quant. Biol. 37, 361–376 (1973).

    CAS  Google Scholar 

  57. J. C. Haselgrove, X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle, Cold Spring Harb. Symp. Quant. Biol. 37, 341–352 (1973).

    CAS  Google Scholar 

  58. D. F. A. McKillop, and M. A. Geeves, Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J. 65, 693–701 (1993).

    Article  PubMed  CAS  Google Scholar 

  59. M. A. Geeves, and S. S. Lehrer, The muscle thin filament as a classical M. cooperative/allosteric regulatory system, J. Mol. Biol. 277, 1081–1089 (1998).

    Article  PubMed  Google Scholar 

  60. R. Craig, and W. Lehman, Crossbridge and tropomyosin positions observed in native, interacting thick, and thin filaments, J. Mol. Biol. 311, 1027–1036 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. S. V. Perry, Troponin I: inhibitor or facilitator? Mol. Cell. Biochem. 190, 9–32, (1999).

    Article  PubMed  CAS  Google Scholar 

  62. S. V. Perry, What is the role of tropomyosin in the regulation of muscle contraction? J. Muscle Res. Cell Motil. 24, 593–596 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. V. B. Patchell, C. E. Gallon, J. S. Evans, Y. Gao, S. V. Perry, and B. A. Levine, The regulatory effects of tropomyosin and troponin-I on the interaction of myosin loop regions with F-actin, J. Biol. Chem. 280, 14469–14475 (2005).

    Article  PubMed  CAS  Google Scholar 

  64. L. S. Tobacman, Structure and regulation of cardiac and skeletal muscle thin filaments, in: Molecular Control Mechanisms in Striated Muscle Contraction, edited by R. J. Moss, and R. L. Salaro (Klewer, Dordrecht, 2002), pp. 143–162.

    Google Scholar 

  65. J. H. Brown, and C. Cohen, Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function, in: Advances in Protein Chemistry, Vol. 7, edited by F. M. Richards, D. S. Eisenberg, and J. Kuriyan, (Elsevier Academic Press, Amsterdam, 2005), pp. 121–165.

    Google Scholar 

  66. M. X. Li, X. Wang, and B. D. Sykes, Structural based insights into the role of troponin in cardiac muscle pathophysiology, J. Muscle Res. Cell Motil. 25, 559–579 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. T. Kobayashi, and R. J. Solaro, Calcium, thin filaments and the integrative biology of cardiac contractility, Ann. Rev. Physiology 67, 9–67 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2007 Springer

About this paper

Cite this paper

Gergely, J. (2007). Highlights of the History of Calcium Regulation of Striated Muscle. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_3

Download citation

Publish with us

Policies and ethics