Advertisement

Ion Pumping by Calcium ATPase of Sarcoplasmic Reticulum

  • Chikashi Toyoshima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)

Abstract

Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) is an integral membrane protein of 110K and the best characterised member of the P-type (or E1/E2-type) ion translocating ATPases. It was first identified by Ebashi in the “relaxing factor” of muscle contraction and gave rise to the calcium theory that Ca2+ is a fundamental and ubiquitous factor in the regulation of intracellular processes.1 There are several types of Ca2+-ATPases in different tissues; all transfer Ca2+ from the cytoplasm to the opposite side of the membrane and countertransport H+. Stoichiometry of Ca2+: ATP may be variable but it is well established that SERCA1a can transfer two Ca2+ per ATP hydrolysed.2 In the sarcoplasmic reticulum (SR) membrane, Ca2+-ATPase pumps Ca2+, released into muscle cells during muscle contraction, back into SR, thereby relaxes muscle cells. This pump runs as long as ATP and Ca2+ are present, and establishes more than 104-fold concentration gradient across membranes. According to the classical E1/E2 theory, transmembrane Ca2+-binding sites have high affinity and face the cytoplasm in E1; in E2, the binding sites have low affinity and face the lumen of SR (extracellular side).2,3 Actual transfer of bound Ca2+ is thought to take place between two phosphorylated intermediates, E1P and E2P, in exchange of H+. Because 2 Ca2+ are transferred in the forward direction and 2 to 3 protons in the opposite direction, active transport of Ca2+ is an electrogenic process. Although no H+ gradient is built up across the SR membrane because it is leaky to H+, this Ca2+/H+ exchange may cause pathological pH effects with plasma membrane Ca2+-ATPase.4

Keywords

Sarcoplasmic Reticulum Phosphorylation Site Cytoplasmic Domain Transmembrane Helix Calcium Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

25.7. References

  1. 1.
    S. Ebashi, and F. Lipman, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell Biol. 14, 389–400 (1962).CrossRefPubMedGoogle Scholar
  2. 2.
    J. V. Møller, B. Juul, and M. le Maire, Structural organization, ion transport, and energy transduction of P-type ATPases, Biochim. Biophys. Acta 1286, 1–51 (1996).PubMedGoogle Scholar
  3. 3.
    L. de Meis, and A. L. Vianna, Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem. 48, 275–292 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Mata, and M. R. Sepúlveda, Caclium pumps in the central nervous system, Brain Res. Rev. 49, 398–405 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    S. R. Denmeade, and J. T. Isaacs, The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer, Cancer Biol. Ther. 4, 14–22 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    U. Eckstein-Ludwig, R. J. Webb, I. D. A. van Goethem, J. M. East, A. G. Lee, M. Kimura, P. M. O’Neill, P. G. Bray, S. A. Ward, and S. Krishna, Artemisinins target the SERCA of Plasmodium falciparum, Nature 424, 957–960 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    D. H. MacLennan, and E. G. Kranias, Phospholamban: a crucial regulator of cardiac contractility, Nature Rev. Mol. Cell Biol. 4, 566–567 (2003).CrossRefGoogle Scholar
  8. 8.
    C. Toyoshima, M. Nakasako, H. Nomura, and H. Ogawa,. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution, Nature 405, 647–655 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Toyoshima, and H. Nomura, Structural changes in the calcium pump accompanying the dissociation of calcium, Nature 418, 605–611 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Toyoshima, and T. Mizutani, Crystal structure of the calcium pump with a bound ATP analogue, Nature 430, 529–535 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    C. Toyoshima, H. Nomura, and T. Tsuda, Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues, Nature 432, 361–368, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    K. Obara, N. Miyashita, C. Xu, I. Toyoshima, Y. Sugita, G. Inesi, and C. Toyoshima, Structural role of countertransport revealed in Ca2+-pump crystal structure in the absence of Ca2+, Proc. Natl. Acad. Sci. USA 102, 14489–14496 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Sugita, N. Miyashita, M. Ikeguchi, A. Kidera, and C. Toyoshima, Protonation of the acidic residues in the transmembrane cation-binding sites of the Ca2+-pump, J. Am. Chem. Soc. 127, 6150–6151 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Toyoshima, and G. Inesi, Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem 73, 269–292 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    W. Kühlbrandt, Biology, structure and mechanism of P-type ATPases, Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    J. D. Clausen, B. Vilsen, D. B. McIntosh, A. P. Einholm, and J. P. Andersen, Glutamate-183 is the conserved TGES motif of domain A of sarcoplasmic reticulum Ca2+-ATPase assists in catalysis of E 2/E 2P partial reactions, Proc. Natl. Acad. Sci. USA 101, 2776–2781 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Ma, D. Lewis, C. Xu, G. Inesi, and C. Toyoshima, Functional and structural roles of critical amino acids within the “N,” “P” and “A” domains of the Ca2+ ATPase (SERCA) headpiece, Biochemistry 44, 8090–8100 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Aravind, M. Y. Galperin, and E. V. Koonin, The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold, Trends Biochem. Sci. 23, 127–129 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    L. N. Johnson, and R. J. Lewis, Structural basis for control by phosphorylation, Chem. Rev. 101, 2209–2242 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    J. D. Clausen, D. B. McIntosh, B. Vilsen, D. G. Woolley, and J. P. Andersen, Importance of conserved N-domain residues Thr441, Glu442, Lys515, Arg560, and Leu562 of sarcoplasmic reticulum Ca2+-ATPase for MgATP binding and subsequent catalytic steps, J. Biol. Chem. 278, 20245–20258 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    T. L. Sørensen, J. V. Møller, and P. Nissen, Phosphoryl transfer and calcium ion occlusion in the calcium pump, Science 304, 1672–1675 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    C. Olesen, T. L. Sørensen, R. C. Nielsen, J. V. Møller, and P. Nissen, Dephosphorylation of the calcium pump coupled to counterion occlusion, Science 306, 2251–2255 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Inesi, M. Kurzmack, C. Coan, and D. E. Lewis, Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles, J. Biol. Chem. 255, 3025–3031 (1980).PubMedGoogle Scholar
  24. 24.
    Z. Zhang, D. Lewis, C. Strock, G. Inesi, M. Nakasako, H. Nomura, and C. Toyoshima, Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase, Biochemistry 39, 8758–8767 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Inesi, H. Ma, D. Lewis, and C. Xu, Ca2+ Occlusion and gating function of Glu309 in the ADP-Fluoro-aluminate analog of the Ca2+-ATPase phosphoenzyme intermediate, J. Biol. Chem. 279, 31629–31637 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Danko, T. Daiho, K. Yamasaki, M. Kamidochi, H. Suzuki, and C. Toyoshima, ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin, FEBS Lett. 489, 277–282 (2001).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Danko, K. Yamasaki, T. Daiho, H. Suzuki, and C. Toyoshima, Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E1P and E1ATP states: a limited proteolysis study, FEBS Lett. 505, 129–135 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Picard, C. Toyoshima, and P. Champeil, Effects of inhibitors on luminal opening of Ca2+ binding sites in an E2P-like complex of sarcoplasmic reticulum Ca2+-ATPase with Be2+-fluoride, J. Biol. Chem. in press.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Chikashi Toyoshima
    • 1
  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan

Personalised recommendations