Dysregulation of the Gain of CICR Through Ryanodine Receptor1 (RyR1): The Putative Mechanism Underlying Malignant Hyperthermia

  • Yasuo Ogawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


Ca2+ released through the Ca2+ release channel triggers muscle contraction. The Ca2+ release channel in the sarcoplasmic reticulum (SR) of the striated muscles is referred to as the ryanodine receptor (RyR), and is so named because of its binding ability of the open state with a high affinity to ryanodine.1, 2, 3, 4, 5, 6 Three genetically distinct isoforms (RyR1-3) are identified in mammals: RyR1 is the primary isoform in the skeletal muscle, RyR2 in the cardiac muscle, and RyR3 is ubiquitously expressed, although in a minuscule amount. In non-mammalian vertebrate skeletal muscles, e.g., chicken, frog, and fish, two isoforms referred to as α- and β-RyR are expressed in almost equal amounts. Further studies show that α- and β-RyR are homologs of RyR1 and RyR3, respectively, and that RyR3 is much degenerated and almost disappears in adult mammalian skeletal muscles except diaphragm and soleus.2,5,6


Sarcoplasmic Reticulum Release Channel Ryanodine Receptor Malignant Hyperthermia Malignant Hyperthermia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

24.6. References

  1. 1.
    G. Meissner, Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors, Ann. Rev. Physiol. 56, 485–508 (1994).CrossRefGoogle Scholar
  2. 2.
    J. A. Sutko, and J. A. Airey, Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol. Rev. 76, 1027–1071 (1996).PubMedGoogle Scholar
  3. 3.
    C. Franzini-Armstrong, and F. Protasi, Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions, Physiol. Rev. 77, 699–729 (1997).PubMedGoogle Scholar
  4. 4.
    D. H. MacLennan, Ca2+ signaling and muscle disease, Eur. J. Biochem. 267, 5291–5297 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Ogawa, Role of ryanodine receptors, Crit. Rev. Biochem. Mol. Biol. 29, 229–274 (1994).PubMedGoogle Scholar
  6. 6.
    V. Sorrentino, and C. Reggiani, Expression of the ryanodine receptor type 3 in skeletal muscle. A new partner in excitation-contraction coupling? Trends Cardiovasc. Med. 9, 54–61 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Endo, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57, 71–108 (1977).PubMedGoogle Scholar
  8. 8.
    M. F. Schneider, and W. K. Chandler, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling, Nature 242, 244–246 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Murayama, and Y. Ogawa, Roles of two ryanodine receptor isoform coexisting in skeletal muscle, Trends Cardiovasc. Med. 12, 305–311 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Murayama, and Y. Ogawa, Selectively suppressed Ca2+-induced Ca2+ release activity of α-ryanodine receptor (α-RyR) in frog skeletal muscle sarcoplasmic reticulum: potential distinct modes in Ca2+ release between α-and β-RyR, J. Biol. Chem. 276, 2953–2960 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Murayama, and Y. Ogawa, RyR1 exhibits lower gain of CICR activity than RyR3 in the SR: evidence for selective stabilization of RyR1 channel, Am. J. Physiol. Cell. Physiol. 287, C36–C45 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Yamamoto, R. El-Hayek, and N. Ikemoto, Postulated role of interdomain interaction within the ryanodine receptor in Ca2+ channel regulation, J. Biol. Chem. 275, 11618–11625 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    N. Ikemoto, and T. Yamamoto, Regulation of Ca2+ release by interdomain interaction within ryanodine receptors, Front. Biosci. 7, d671–d683 (2002).PubMedGoogle Scholar
  14. 14.
    J. R. Mickelson, and C. F. Louis, Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel and cell regulation defects, Physiol. Rev. 76, 537–592 (1996).PubMedGoogle Scholar
  15. 15.
    M. Denborough, Malignant hyperthermia, Lancet 352(9134), 1131–1136 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Jurkat-Rott, T. McCarthy, and F. Lehmann-Horn, Genetic and pathogenesis of malignant hyperthermia, Muscle Nerve 23, 4–17 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    T. E. Nelson, Malignant hyperthermia: a pharmacogentic disease of Ca2+ regulating proteins, Curr. Mol. Med. 2, 347–369 (2002).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Brini, Ryanodine receptor defects in muscle genetic diseases, Biochem. Biophys. Res. Commun. 322, 1245–1255 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    N. A. Benkusky, E. F. Farrell, and H. H. Valdivia, Ryanodine receptor channelopathies, Biochem. Biophys. Res. Commun. 322, 1280–1285 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    R. T. Dirksen, and G. Avila, Pathophysiology of muscle disorders linked to mutations in the skeletal muscle ryanodine receptor, in: Ryanodine Receptors: Structure, Function and Dysfunction in Clinical Disease, edited by X. H. Wehrens, and A. R. Marks (Springer Science, New York, 2005), pp. 229–242.Google Scholar
  21. 21.
    M. Endo, S. Yagi, T. Ishizuka, K. Horiuti, Y. Koga, and K. Amaha, Changes in the Ca-induced Ca release mechanism in the sarcoplasmic reticulum of the muscle from a patient with malignant hyperthermia, Biomed. Res. 4, 83–92 (1983).Google Scholar
  22. 22.
    D. R. Laver, V. J. Owen, P. R. Junankar, N. L. Taske, A. F. Dulhunty, and G. D. Lamb, Reduced inhibitory effect of Mg2+ on the ryanodine receptor-Ca2+ release channels in malignant hyperthermia, Biophys. J. 73, 1913–1924 (1997).PubMedGoogle Scholar
  23. 23.
    J. Tong, H. Oyamada, N. Demaurex, S. Grinstein, T. V. McCarthy, and D. H. MacLennann, Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease, J. Biol. Chem. 272, 26332–26339 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    E. M. Balog, B. R. Fruen, N. H. Shomer, and C. F. Louis, Divergent effects of the malignant hyperthermia-susceptible Arg615→Cys mutation on the Ca2+ and Mg2+ dependence of the RyR1, Biophys. J. 81, 2050–2058 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Yang, T. A. Ta, I. N. Pessah, and P. D. Allen, Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling, J. Biol. Chem. 278, 25722–25730 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Murayama, T. Oba, S. Kobayashi, N. Ikemoto, and Y. Ogawa, Postulated role of interdomain interactions within the type 1 ryanodine receptor in the low gain of Ca2+-induced Ca2+ release activity of mammalian skeletal muscle sarcoplasmic reticulum, Am. J. Physiol. Cell. Physiol. 288, 1222–1230 (2005).CrossRefGoogle Scholar
  27. 27.
    T. Yamamoto, and N. Ikemoto, Spectroscopic monitoring of local conformational changes during the intramolecular domain-domain interaction of the ryanodine receptor, Biochemistry 41, 1492–1501 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Krause, M. V. Gerbershagen, M. Fiege, R. Weisshorn, and F. Wrappler, Dantrolene: a review of its pharmacology, therapeutic use and new developments, Anesthesia 59, 364–373 (2004).CrossRefGoogle Scholar
  29. 29.
    K. Paul-Pletzer, T. Yamamoto, M. B. Bhat, J. Ma, N. Ikemoto, L.S. Jimenez, H. Morimoto, P. G. Williams, and J. Parness, Identification of a dantrolene-binding sequence on the skeletal muscle ryanodine receptor, J. Biol. Chem. 277, 34918–34923 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Kobayashi, M. L. Bannister, J. P. Gangopadhyay, T. Hamada, J. Parness, and N. Ikemoto, Dantrolene stabilizes domain interactions within the ryanodine receptor, J. Biol. Chem. 280, 6580–6587 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Ohta, M. Endo, T. Nakano, Y. Morohoshi, K Wanikawa, and A. Ohga, Ca2+-induced Ca2+ release in malignant hyperthermia-susceptible pig skeletal muscle, Am. J. Physiol. Cell. Physiol. 256, C358–C367 (1989).Google Scholar
  32. 32.
    B. R. Fruen, J. R. Mickelson, and C. F. Louis, Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors, J. Biol. Chem. 272, 26965–26971 (1997).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Murayama, T. Oba, E. Katayama, H. Oyamada, K. Oguchi, M. Kobayashi, K. Otsuka, and Y. Ogawa, Further characterization of type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm, J. Biol. Chem. 274, 17297–17308 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    I. I. Serysheva, S. L. Hamilton, W. Chiu, and S. J. Ludtke, Structure of Ca2+ release channel at 14 Å resolution, J. Mol. Biol. 345, 427–431 (2005).PubMedCrossRefGoogle Scholar
  35. 35.
    Z. Liu, R. Wang, J. Zhang, S. R. W. Chen, and T. Wagenknecht, Localization of a disease-associated mutation site in the three-dimensional structure of cardiac ryanodine receptor, J. Biol. Chem. 280, 37941–37947.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Yasuo Ogawa
    • 1
  1. 1.Department of PharmacologyJuntendo University School of MedicineTokyoJapan

Personalised recommendations