Regulation by Myosin: How Calcium Regulates Some Myosins, Past and Present

  • Andrew G. Szent-Györgyi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


This symposium celebrates the seminal discovery of troponin by Professor Ebashi. In the 1960s we knew quite a bit about how muscle functions. It was established that contraction was the result of the interaction of ATP with the complex formed from actin and myosin.1 The filamentous structure2 and the constancy of the A-band of striated muscle led to the sliding filament theory.3,4 A detailed model relating muscle mechanics with the cross bridge cycle was produced.5 A change in orientation of the cross bridge between rest and rigor in insect muscle was also demonstrated.6 However, we were ignorant regarding how muscles stay relaxed.


Light Chain ATPase Activity Calcium Binding Myosin Head Regulatory Light Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

21.9. References

  1. 1.
    A. Szent-Györgyi, Studies on muscle, Acta Physiol. Scand. 9(Suppl. 25), 25 (1945).Google Scholar
  2. 2.
    H. E. Huxley, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Cytol. 3, 631–648 (1957).PubMedCrossRefGoogle Scholar
  3. 3.
    A. F. Huxley and A. F. Niedergerke, Structural changes in muscle during contraction. Interference microscopy of living muscle fibers, Nature 173, 971–978 (1954).PubMedCrossRefGoogle Scholar
  4. 4.
    H. E. Huxley and J. Hanson, Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature 173, 979–978 (1954).Google Scholar
  5. 5.
    A. F. Huxley, Muscle structure and theories of contraction, Progr. Biophys. Biophys. Chem. 7, 255–318 (1957).Google Scholar
  6. 6.
    M. K. Reedy, K. C. Holmes, and R. T. Tregear, Induced changes in orientation of the cross bridges of glycerinated insect flight muscle, Nature 207, 1276–1280 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Kumagai, S. Ebashi, and F. Takeda, Essential relaxing factor in muscle other than myokinase and creatine-phosphokinase, Nature 176, 166 (1955).PubMedCrossRefGoogle Scholar
  8. 7a.
    A. Weber, R. Herz, and I. Reiss, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345, 329–369 (1966).Google Scholar
  9. 8.
    W. Hasselbach and N. Makinose, Die calciumpumpe der “erschlaffungsgrana” des muskels und ihre abhangigkeit von der ATP-spaltung, Biochem. Z. 333, 94–111 (1961).Google Scholar
  10. 9.
    S. Ebashi and F. Lippman, Adenosine triphosphate-linked concentration of calcium ions in a particular fraction of rabbit muscle, J. Cell. Biol. 14, 389–400 (1962).CrossRefPubMedGoogle Scholar
  11. 10.
    S. Ebashi, Third component participating in the superprecipitation of “natural actomyosin”, Nature 200, 1010 (1963).PubMedCrossRefGoogle Scholar
  12. 11.
    S. Ebashi and F. Ebashi, A new protein component participating in the superprecipitation of myosin B, J. Biochem. 55, 604–613 (1964).PubMedGoogle Scholar
  13. 12.
    S. Ebashi and M. Endo, Calcium ion and muscle contraction, Progr. Biophys. Mol. Biol. 18, 123–183 (1968).CrossRefGoogle Scholar
  14. 13.
    A. G. Szent-Györgyi, C. Cohen, and J. Kendrick-Jones. Paramyosin and the filaments of molluscan “catch” muscles II. Native filaments: isolation and characterization, J. Mol. Biol. 56, 239–258 (1971).PubMedCrossRefGoogle Scholar
  15. 14.
    J. Kendrick-Jones, W. Lehman, and A. G. Szent-Györgyi, Regulation in molluscan muscles, J. Mol. Biol. 54, 313–326 (1970).PubMedCrossRefGoogle Scholar
  16. 15.
    W. Lehman and A. G. Szent-Györgyi, Regulation of muscular contraction: Distribution of actin control and myosin control in the animal kingdom, J. Gen. Physiol. 66, 1–30 (1975).PubMedCrossRefGoogle Scholar
  17. 16.
    A. Goldberg and W. Lehman, Troponin-like proteins from muscles of the scallop, Aequipecten irradians. Biochem. J. 171, 413–418 (1978).PubMedGoogle Scholar
  18. 17.
    T. Ojima and K. Mishita, Troponin from Akazara scallop striated adductor muscles, J. Biol. Chem. 261, 16749–16754 (1986).PubMedGoogle Scholar
  19. 18.
    G. Ashiba, T. Asada, and S. Watanabe, Calcium regulation in clam foot muscle. Calcium sensitivity of clam foot myosin, J. Biochem. 58, 837–846 (1980).Google Scholar
  20. 19.
    C. Wells and C. R. Bagshaw, Calcium regulation of molluscan myosin ATPase in the absence of actin, Nature 313, 696–697 (1985).PubMedCrossRefGoogle Scholar
  21. 20.
    R. N. Simmons and A. G. Szent-Györgyi, Reversible loss of calcium control of tension in scallop striated muscle associated with the removal of regulatory light chains, Nature 273, 62–64 (1978).PubMedCrossRefGoogle Scholar
  22. 21.
    E. M. Szentkiralyi, Tryptic digestion of scallop S1: evidence for a complex between the two light chains and a heavy-chain peptide, J. Muscle Res. Cell. Motil. 5, 147–164 (1987).CrossRefGoogle Scholar
  23. 22.
    A. G. Szent-Györgyi, E. M. Szentkiralyi, and J. Kendrick-Jones, The light chains of scallop myosin as regulatory subunits, J. Mol. Biol. 74, 179–203 (1973).PubMedCrossRefGoogle Scholar
  24. 23.
    C. R. Bagshaw and J. Kendrick-Jones, Characterization of homologous divalent metal ion binding sites of vertebrate myosins using paramagnetic resonance spectroscopy, J. Mol Biol. 130, 317–336 (1979).PubMedCrossRefGoogle Scholar
  25. 24.
    P. D. Chantler and A. G. Szent-Györgyi, Regulatory light chains and scallop myosin: full dissociation and cooperative effects, J. Mol. Biol. 138, 473–499 (1980).PubMedCrossRefGoogle Scholar
  26. 25.
    L. Nyitray, E. B. Goodwin, and A. G. Szent-Györgyi, Complete primary structure of a scallop striated muscle myosin heavy chain, J. Biol. Chem. 266, 18469–18476 (1991).PubMedGoogle Scholar
  27. 26.
    J. H. Collins, Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons, J. Muscle Res. Cell Motil. 12, 3–25 (1991).PubMedCrossRefGoogle Scholar
  28. 27.
    J. R. Sellers, P. D. Chantler, and A. G. Szent-Györgyi, Hybrid formation between scallop myofibrils and foreign regulatory light-chains, J. Mol. Biol. 144, 223–245 (1980).PubMedCrossRefGoogle Scholar
  29. 28.
    J. M. Scholey, K. A. Taylor, and J. Kendrick-Jones, The role of myosin light chains in regulating actin-myosin interaction, Biochimie 63, 255–271 (1981).PubMedGoogle Scholar
  30. 29.
    H. Kwon, E. B. Goodwin, L. Nyitray, E. Berliner, E. O’Neall-Hennessey, F. D. Melandri, and A. G. Szent-Györgyi, Isolation of the regulatory domain of scallop myosin. Role of the essential light chain in calcium binding, Proc. Natl. Acad. Sci. USA 87, 4771–4775 (1990).PubMedCrossRefGoogle Scholar
  31. 30.
    J. H. Collins, J. R. Jakes, J. Kendrick-Jones, J. Leszyk, W. Baruch, J. L. Theibert, J. Spiegel, and A. G. Szent-Györgyi, Amino acid sequence of myosin essential light chain from the scallop Aequipecten irradians, Biochemistry 25, 7651–7656 (1986).PubMedCrossRefGoogle Scholar
  32. 31.
    S. Fromherz and A. G. Szent-Györgyi, Role of essential light chain EF hand domain in calcium binding and regulation of scallop myosin, Proc. Natl. Acad. Sci. USA 92, 7652–7656 (1995).PubMedCrossRefGoogle Scholar
  33. 32.
    X. Xie, D. H. Harrison, I. Schlichting, R. M. Sweet, V. N. Kalabokis, A. G. Szent-Györgyi, and C. Cohen, Structure of the regulatory domain of scallop myosin at 2.8 Å resolution, Nature 368, 316–394 (1994).CrossRefGoogle Scholar
  34. 33.
    A. Houdusse and C. Cohen, Structure of the regulatory domain of scallop myosin at 2 Å resolution; implications for regulation, Structure (London) 4, 21–32 (1996).Google Scholar
  35. 34.
    A. Jancso and A. G. Szent-Györgyi, Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue, Proc. Natl. Acad. Sci. USA 91, 8762–8766 (1994).PubMedCrossRefGoogle Scholar
  36. 35.
    C. Wells, K. E. Warriner, and C. R. Bagshaw, Fluorescence studies on the nucleotide and Ca2+ binding domains of molluscan myosin, Biochem. J. 231, 31–38 (1985).PubMedGoogle Scholar
  37. 36.
    A. P. Jackson and C. R. Bagshaw, Transient-kinetic studies of the adenosine triphosphate activity of scallop heavy meronyosin, Biochem. J. 251, 515–526 (1988).PubMedGoogle Scholar
  38. 37.
    A. P. Jackson. and C. R. Bagshaw, Kinetic trapping of intermediates of the scallop heavy meromyosin adenosine triphosphatase reaction revealed by formycin nucleotides, Biochem. J. 251, 527–540 (1988).PubMedGoogle Scholar
  39. 38.
    L. Nyitray, A. Jancso, Y. Ochiai, L. Graf, and A. G. Szent-Györgyi, Scallop striated and smooth muscle myosin heavy chain isoforms are produced by alternative RNA splicing from a single gene, Proc. Natl. Acad. Sci. USA 91, 12686–12690 (1994).PubMedCrossRefGoogle Scholar
  40. 39.
    C. L. Perreault-Micale, V. N. Kalabokis, L. Nyitray, and A. G. Szent-Györgyi, Sequence variations in the surface loop near the nucleotide binding site modulate the ATP turnover rates of molluscan myosins, J. Muscle. Res. Cell Motil. 14, 543–553 (1996).CrossRefGoogle Scholar
  41. 40.
    S. E. Kurzawa-Goertz, C. L. Perreault-Micale, K. M. Trybus, A. G. Szent-Györgyi, and M. A. Geeves, Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms, Biochemistry 37, 7517–7525 (1998).PubMedCrossRefGoogle Scholar
  42. 41.
    P. D. Chantler, J. R. Sellers, and A. G. Szent-Györgyi, Cooperativity in scallop myosin, Biochemistry 20, 210–216 (1981).PubMedCrossRefGoogle Scholar
  43. 42.
    V. N. Kalabokis and A. G. Szent-Györgyi, Cooperativity and regulation of scallop myosin and myosin fragments, Biochemistry 36, 15834–15840 (1997).PubMedCrossRefGoogle Scholar
  44. 43.
    W. F. Stafford, M. P. Jacobsen, J. Woodhead, R. Craig, E. O’Neall-Hennessey, and A. G. Szent-Györgyi, Calcium-dependent structural changes in scallop heavy meromyosin, J. Mol. Biol. 307, 137–147 (2001).PubMedCrossRefGoogle Scholar
  45. 44.
    M. Nyitrai, A. G. Szent-Györgyi, and M. A. Geeves, A kinetic model of the co-operative binding of calcium and ADP to scallop (Argo-pecten irradians) heavy meromyosin, Biochem. J. 365, 19–30 (2002).PubMedCrossRefGoogle Scholar
  46. 45.
    M. Nyitrai, A. G. Szent-Györgyi, and M. A. Geeves, Interactions of the two heads of scallop (Argo-pecten irradians) heavy meromyosin with actin: influence of calcium and nucleotides, Biochem. J. 370, 839–848 (2003).PubMedCrossRefGoogle Scholar
  47. 46.
    M. Nyitray, W. F. Stafford, A. G. Szent-Györgyi, and M. A. Geeves, Ionic interactions play a role in the regulatory mechanism of scallop heavy meromyosin, Biophys. J. 85, 1053–1562 (2003).CrossRefGoogle Scholar
  48. 47.
    H. Suzuki, W. F. Stafford, H. S. Slayter, and J. C. Seidel, A conformational transition in gizzard heavy meromyosin involving the head tail junction, resulting in changes in sedimentation coefficient, ATPase activity, and orientation of heads, J. Biol. Chem. 260, 4810–14817 (1985).Google Scholar
  49. 48.
    D. Wendt, D. Taylor, T. Messier, K. M. Trybus, and K. A. Taylor, Visualization of head-interactions in the inhibited state of smooth muscle myosin, J. Cell. Biol. 147, 1385–1389 (1999).PubMedCrossRefGoogle Scholar
  50. 49.
    J. Liu, T. Wendt, D. Taylor, and K. Taylor, Refined model of the 10S conformation of smooth muscle by cryo-electron microscopy 3D image reconstruction, J. Mol. Biol. 329, 963–972 (2003).PubMedCrossRefGoogle Scholar
  51. 50.
    A. Houdusse, A. G. Szent-Györgyi, and C. Cohen, Three conformational state of scallop myosin S1, Proc. Natl. Acad. Sci. USA 97, 11238–11243 (2000).PubMedCrossRefGoogle Scholar
  52. 51.
    H. S. Jung, S. A. Burggess, M. Colegrave, H. Patel, P. D. Chantler, J. M. Chalovich, J. Trinick, and P. J. Knight, Comparative studies of the folded structures of scallop striated and vertebrate smooth muscle myosins, Biophys. J. 86, 406a (2004).Google Scholar
  53. 52.
    J. Woodhead, F.-Q. Zhao, R. Craig, E. H. Egelman, L. Alamo, and R. Padron, Atomic model of a myosin filament in the relaxed state, Nature 436, 1195–1199 (2005).PubMedCrossRefGoogle Scholar
  54. 53.
    J. A. Rall, Mechanics and energetics of contraction in striated muscle of the sea scallop, Placopecten magellanicus, J. Physiol. 321, 287–295 (1981).PubMedGoogle Scholar
  55. 54.
    P. Vibert and R. Craig, Structural changes that occur in scallop myosin filaments upon activation, J. Cell. Biol. 101, 830–837 (1985).PubMedCrossRefGoogle Scholar
  56. 55.
    F.-Q. Zhao and R. Craig, Ca2+ causes release of myosin heads from the thick filament surface on the milliseconds time scale, J. Mol. Biol. 327, 145–158 (2003).PubMedCrossRefGoogle Scholar
  57. 56.
    F. Wang, K. Thirumurugan, W. F. Stafford, J. A. Hammer, P. J. Knight, and J. R. Sellers, Regulated conformation of myosin V, J. Biol. Chem. 279, 2333–2336 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Andrew G. Szent-Györgyi
    • 1
  1. 1.Brandeis UniversityWalthamUSA

Personalised recommendations