We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Cardiac Troponin Levels as a Preferable Biomarker of Myocardial Cell Degradation | SpringerLink
Skip to main content

Cardiac Troponin Levels as a Preferable Biomarker of Myocardial Cell Degradation

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

  • 1598 Accesses

Abstract

The enzymatic assay of creatine kinase (CK) activity in serum was established in 1959 by Okinaka’s group including Dr. Ebashi. As a biomarker of muscle cell injury,1 the activity assay has been a main procedure to make the precise diagnosis among most markers. It is my honor and privilege to appreciate Dr. Setsuro Ebashi and his wife, Dr. Fumiko Ebashi, for their discovery of troponin (Tn) in skeletal muscle and cardiac muscle and their contribution to the clinical research of a variety of skeletal and cardiac muscle diseases or syndromes, as well as the biological significance.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

20.13. References

  1. S. Okinaka, H. Sugita, H. Momoi, and S. Ebashi, et al., Serum creatine phosphokinase and aldolase activity in neuromuscular disorders. Trans. Am. Neurol. Assoc. 84, 62–64 (1959).

    PubMed  CAS  Google Scholar 

  2. S. Ebashi, Y. Nonomura, and T. Toyo-oka, et al., Regulation of muscle contraction by the calciumtroponin-tropomyosin system, Symp. Soc. Exp. Biol. (Cambridge Univ. Press) 30, 349–360 (1976).

    CAS  Google Scholar 

  3. Hypertension and coronary heart disease: classification and criteria for epidemiological studies, WHO Tech. Support. Ser. 168, 3–28 (1959).

    Google Scholar 

  4. H. A. Katus, A. Remppis, and F. J. Neumann, et al., Diagnostic efficiency of troponin T measurements in acute myocardial infarction, Circulation 83, 902–912 (1991).

    PubMed  CAS  Google Scholar 

  5. A. S. Jaffe, J. Ravkilde, and R. Roberts, et al., It’s time for a change to a troponin standard, Circulation 102, 1216 (2000).

    PubMed  CAS  Google Scholar 

  6. O. Bazzino, J. J. Fuselli, and F. Botto, et al., PACS group of investigators. Relative value of N-terminal probrain natriuretic peptide, TIMI risk score, ACC/AHA prognostic classification and other risk markers in patients with non-ST-elevation acute coronary syndromes, Eur. Heart J. 25, 859–866 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. H. A. Katus, A. Remppis, Sheffold, et al., Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction, J. Am. Coll. Cardiol. 67, 1360–1367 (1991).

    CAS  Google Scholar 

  8. H. A. Katus, A. Remppis, and F. J. Neumann, et al., Diagnostic efficiency of troponin T measurements in acute myocardial infarction, Circulation 83, 902–912 (1991).

    PubMed  CAS  Google Scholar 

  9. J. E. Adams 3rd, G. A. Sicard, and B. T. Allen, et al., Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I, N. Engl. J. Med. 330, 670–674 (1994).

    Article  PubMed  Google Scholar 

  10. M. D. McLaurin, F. S. Apple, and E. M. Voss, et al., Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle, Clin. Chem. 43, 976–982 (1997).

    PubMed  CAS  Google Scholar 

  11. V. Ricchiuti, E. M. Voss, and A. Ney, et al., Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim, Clin. Chem. 44, 1919–1924 (1998).

    PubMed  CAS  Google Scholar 

  12. T. Katsuki, T. Toyo-oka, and T. Takayasu, et al., Differences in regulatory mechanisms of atrial and ventricular muscle contraction in bovine heart, Jpn Circ. J. 52, 376–384 (1988).

    PubMed  CAS  Google Scholar 

  13. T. Toyo-oka, J. Ross Jr, Ca2+ sensitivity change and troponin loss in cardiac natural actomyosin after coronary occlusion, Am. J. Physiol. 240, H704–H708 (1981).

    PubMed  CAS  Google Scholar 

  14. J. L. McDonough, D. K. Arrell, and J. E. Van Eyk, et al., Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury, Circ. Res. 84, 9–20 (1999).

    PubMed  CAS  Google Scholar 

  15. C. W. Hamm, C. Heeschen, and B. Goldmann, et al., Benefit of abciximab in patients with refractory unstable angina in relation to serum troponin T levels: c7E3 Fab Antiplatelet Therapy in Unstable Refractory Angina (CAPTURE) study investigators, N. Engl. J. Med. 340, 1623–1629 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. E. M. Voss, S. W. Sharkey, and A. E. Gernert, et al., Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium: infarct sizing using serum profiles, Arch. Pathol. Lab. Med. 119, 799–806 (1995).

    PubMed  CAS  Google Scholar 

  17. V. Ricchiuti, S. W. Sharkey, and M. M. Murakami, et al., Cardiac troponin I and T alterations in dog hearts with myocardial infarction: correlation with infarct size, Am. J. Clin. Pathol. 110, 241–247 (1998).

    PubMed  CAS  Google Scholar 

  18. T. Toyo-oka, T. Kawada, and J. Nakata, et al., Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction, Proc. Natl. Acad. Sci. USA 101, 7381–7385 (2004).

    Article  PubMed  Google Scholar 

  19. T. Toyo-oka, T. Shimizu, and T. Masaki, Inhibition of proteolytic activity of calcium activated neutral protease by leupeptin and antipain, Biochem. Biophys. Res. Commun. 82, 484–491 (1978).

    Article  PubMed  CAS  Google Scholar 

  20. T. Toyo-oka, and T. Masaki, Calcium-activated neutral protease from bovine ventricular muscle: isolation and some of its properties, J. Mol. Cell. Cardiol. 11, 769–786 (1979).

    Article  PubMed  CAS  Google Scholar 

  21. H. Yoshida, M. Takahashi, and M. Koshimizu, et al., Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction, Cardiovasc. Res. 59, 419–427 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. M. Takahashi, K. Tanonaka, and H. Yoshida, et al., Effects of ACE inhibitor and AT(1) blocker on dystrophin-related proteins and calpain in failing heart, Cardiovasc. Res. 65, 356–365 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. K. Wildenthal, J. S. Crie, J. M. Ord, and J. R. Wakeland, The role of lysosomes and microtubules in cardiac protein degradation, Adv. Myocardiol. 5, 137–144 (1985).

    PubMed  CAS  Google Scholar 

  24. M. H. Glickman, A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev. 82, 373–428 (2002).

    PubMed  CAS  Google Scholar 

  25. A. G. Katrukha, A. V. Bereznikova, and V. L. Filatov, et al., Degradation of cardiac troponin I: implication for reliable immunodetection, Clin. Chem. 44, 2433–2440 (1998).

    PubMed  CAS  Google Scholar 

  26. Q. Shi, M. Ling, and X. Zhang, et al., Degradation of cardiac troponin I in serum complicates comparisons of cardiac troponin I assays, Clin. Chem. 45, 1018–1025 (1999).

    PubMed  CAS  Google Scholar 

  27. E. Missov, C. Calzolari, and B. Pau, Circulating cardiac troponin I in severe congestive heart failure, Circulation 96, 2953–2958 (1997).

    PubMed  CAS  Google Scholar 

  28. M. Galvani, F. Ottani, and D. Ferrini, et al., Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina, Circulation 95, 2053–2059 (1997).

    PubMed  CAS  Google Scholar 

  29. C. W. Hamm, C. Heeschen, and B. Goldmann, et al., Benefit of abciximab in patients with refractory unstable angina in relation to serum troponin T levels: c7E3 Fab Antiplatelet Therapy in Unstable Refractory Angina (CAPTURE) study investigators, N. Engl. J. Med. 340, 1623–1629 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. P. Stubbs, P. Collinson, and D. Moseley, et al., Prognostic significance of admission troponin T concentrations in patients with myocardial infarction, Circulation 94, 1291–1297 (1996).

    PubMed  CAS  Google Scholar 

  31. J. E. D. Adams, G. S. Bodor, and V. G. Davila-Roman, et al., Cardiac troponin I: a marker with high specificity for cardiac injury, Circulation 88, 101–106 (1993).

    PubMed  Google Scholar 

  32. F. M. Fink, N. Genser, and C. Fink, et al., Cardiac troponin T and creatine kinase MB mass concentrations in children receiving anthracycline chemotherapy, Med. Pediatr. Oncol. 25, 185–189 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. C. Spies, V. Haude, and R. Fitzner, et al., Serum cardiac troponin T as a prognostic marker in early sepsis, Chest 113, 1055–1063 (1998).

    PubMed  CAS  Google Scholar 

  34. T. M. Guest, A. V. Ramanathan, and P. G. Tuteur, et al., Myocardial injury in critically ill patients: a frequently unrecognized complication, JAMA 273, 1945–1949 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. S. P. Rao, S. Miller, and R. Rosenbaum, et al., Cardiac troponin I and cardiac enzymes after electrophysiologic studies, ablations, and defibrillator implantations, Am. J. Cardiol. 84(4), 470, A9 (1999).

    Article  Google Scholar 

  36. J. J. Allan, R. D. Feld, and A. A. Russell, et al., Cardiac troponin I levels are normal or minimally elevated after transthoracic cardioversion, J. Am. Coll. Cardiol. 30, 1052–1056 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. J. Zimmerman, R. Fromm, and D. Meyer, et al., Diagnostic marker cooperative study for the diagnosis of myocardial infarction, Circulation 99, 1671–1677 (1999).

    PubMed  CAS  Google Scholar 

  38. J. Kamblock, L. Payot, and B. Iung, et al., Does rheumatic myocarditis really exists? Systematic study with echocardiography and cardiac troponin I blood levels, Eur. Heart J. 24, 855–862 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. B. Lauer, C. Niederau, and U. Kuhl, et al., Cardiac troponin T in the diagnosis and follow up of suspected myocarditis, Dtsch. Med. Wochenschr. 123, 409–417 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. J. Soongswang, K. Durongpisitkul, and S. Ratanarapee, et al., Cardiac troponin T: its role in the diagnosis of clinically suspected acute myocarditis and chronic in children, Pediatr. Cardiol. 23, 531–535 (2002).

    PubMed  CAS  Google Scholar 

  41. S. Abe, S. Arima, and T. Yamashita, et al., Early assessment of reperfusion therapy using cardiac troponin T, J. Am. Coll. Cardiol. 23, 1382–1389 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. M. A. Karim, M. S. Shinn, and H. Oskarsson, et al., Significance of cardiac troponin T release after percutaneous transluminal coronary angioplasty, Am. J. Cardiol. 76, 521–523 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. B. Riou, S. Dreux, and S. Roche, et al., Circulating cardiac troponin T in potential heart transplant donors, Circulation 92, 409–414 (1995).

    PubMed  CAS  Google Scholar 

  44. R. J. Aviles, A. T. Askari, and B. Lindahl, et al., Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction, N. Engl. J. Med. 346, 2047–2052 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Toyo-oka, T., Kumagai, H. (2007). Cardiac Troponin Levels as a Preferable Biomarker of Myocardial Cell Degradation. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_20

Download citation

Publish with us

Policies and ethics