Cardiac Troponin Levels as a Preferable Biomarker of Myocardial Cell Degradation

  • Teruhiko Toyo-oka
  • Hiroyuki Kumagai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


The enzymatic assay of creatine kinase (CK) activity in serum was established in 1959 by Okinaka’s group including Dr. Ebashi. As a biomarker of muscle cell injury,1 the activity assay has been a main procedure to make the precise diagnosis among most markers. It is my honor and privilege to appreciate Dr. Setsuro Ebashi and his wife, Dr. Fumiko Ebashi, for their discovery of troponin (Tn) in skeletal muscle and cardiac muscle and their contribution to the clinical research of a variety of skeletal and cardiac muscle diseases or syndromes, as well as the biological significance.2


Acute Coronary Syndrome Creatine Kinase Acute Myocardial Infarction Myocardial Injury Cardiac Troponin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

20.13. References

  1. 1.
    S. Okinaka, H. Sugita, H. Momoi, and S. Ebashi, et al., Serum creatine phosphokinase and aldolase activity in neuromuscular disorders. Trans. Am. Neurol. Assoc. 84, 62–64 (1959).PubMedGoogle Scholar
  2. 2.
    S. Ebashi, Y. Nonomura, and T. Toyo-oka, et al., Regulation of muscle contraction by the calciumtroponin-tropomyosin system, Symp. Soc. Exp. Biol. (Cambridge Univ. Press) 30, 349–360 (1976).Google Scholar
  3. 3.
    Hypertension and coronary heart disease: classification and criteria for epidemiological studies, WHO Tech. Support. Ser. 168, 3–28 (1959).Google Scholar
  4. 4.
    H. A. Katus, A. Remppis, and F. J. Neumann, et al., Diagnostic efficiency of troponin T measurements in acute myocardial infarction, Circulation 83, 902–912 (1991).PubMedGoogle Scholar
  5. 5.
    A. S. Jaffe, J. Ravkilde, and R. Roberts, et al., It’s time for a change to a troponin standard, Circulation 102, 1216 (2000).PubMedGoogle Scholar
  6. 6.
    O. Bazzino, J. J. Fuselli, and F. Botto, et al., PACS group of investigators. Relative value of N-terminal probrain natriuretic peptide, TIMI risk score, ACC/AHA prognostic classification and other risk markers in patients with non-ST-elevation acute coronary syndromes, Eur. Heart J. 25, 859–866 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    H. A. Katus, A. Remppis, Sheffold, et al., Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction, J. Am. Coll. Cardiol. 67, 1360–1367 (1991).Google Scholar
  8. 8.
    H. A. Katus, A. Remppis, and F. J. Neumann, et al., Diagnostic efficiency of troponin T measurements in acute myocardial infarction, Circulation 83, 902–912 (1991).PubMedGoogle Scholar
  9. 9.
    J. E. Adams 3rd, G. A. Sicard, and B. T. Allen, et al., Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I, N. Engl. J. Med. 330, 670–674 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    M. D. McLaurin, F. S. Apple, and E. M. Voss, et al., Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle, Clin. Chem. 43, 976–982 (1997).PubMedGoogle Scholar
  11. 11.
    V. Ricchiuti, E. M. Voss, and A. Ney, et al., Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim, Clin. Chem. 44, 1919–1924 (1998).PubMedGoogle Scholar
  12. 12.
    T. Katsuki, T. Toyo-oka, and T. Takayasu, et al., Differences in regulatory mechanisms of atrial and ventricular muscle contraction in bovine heart, Jpn Circ. J. 52, 376–384 (1988).PubMedGoogle Scholar
  13. 13.
    T. Toyo-oka, J. Ross Jr, Ca2+ sensitivity change and troponin loss in cardiac natural actomyosin after coronary occlusion, Am. J. Physiol. 240, H704–H708 (1981).PubMedGoogle Scholar
  14. 14.
    J. L. McDonough, D. K. Arrell, and J. E. Van Eyk, et al., Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury, Circ. Res. 84, 9–20 (1999).PubMedGoogle Scholar
  15. 15.
    C. W. Hamm, C. Heeschen, and B. Goldmann, et al., Benefit of abciximab in patients with refractory unstable angina in relation to serum troponin T levels: c7E3 Fab Antiplatelet Therapy in Unstable Refractory Angina (CAPTURE) study investigators, N. Engl. J. Med. 340, 1623–1629 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    E. M. Voss, S. W. Sharkey, and A. E. Gernert, et al., Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium: infarct sizing using serum profiles, Arch. Pathol. Lab. Med. 119, 799–806 (1995).PubMedGoogle Scholar
  17. 17.
    V. Ricchiuti, S. W. Sharkey, and M. M. Murakami, et al., Cardiac troponin I and T alterations in dog hearts with myocardial infarction: correlation with infarct size, Am. J. Clin. Pathol. 110, 241–247 (1998).PubMedGoogle Scholar
  18. 18.
    T. Toyo-oka, T. Kawada, and J. Nakata, et al., Translocation and cleavage of myocardial dystrophin as a common pathway to advanced heart failure: a scheme for the progression of cardiac dysfunction, Proc. Natl. Acad. Sci. USA 101, 7381–7385 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Toyo-oka, T. Shimizu, and T. Masaki, Inhibition of proteolytic activity of calcium activated neutral protease by leupeptin and antipain, Biochem. Biophys. Res. Commun. 82, 484–491 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Toyo-oka, and T. Masaki, Calcium-activated neutral protease from bovine ventricular muscle: isolation and some of its properties, J. Mol. Cell. Cardiol. 11, 769–786 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Yoshida, M. Takahashi, and M. Koshimizu, et al., Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction, Cardiovasc. Res. 59, 419–427 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Takahashi, K. Tanonaka, and H. Yoshida, et al., Effects of ACE inhibitor and AT(1) blocker on dystrophin-related proteins and calpain in failing heart, Cardiovasc. Res. 65, 356–365 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Wildenthal, J. S. Crie, J. M. Ord, and J. R. Wakeland, The role of lysosomes and microtubules in cardiac protein degradation, Adv. Myocardiol. 5, 137–144 (1985).PubMedGoogle Scholar
  24. 24.
    M. H. Glickman, A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev. 82, 373–428 (2002).PubMedGoogle Scholar
  25. 25.
    A. G. Katrukha, A. V. Bereznikova, and V. L. Filatov, et al., Degradation of cardiac troponin I: implication for reliable immunodetection, Clin. Chem. 44, 2433–2440 (1998).PubMedGoogle Scholar
  26. 26.
    Q. Shi, M. Ling, and X. Zhang, et al., Degradation of cardiac troponin I in serum complicates comparisons of cardiac troponin I assays, Clin. Chem. 45, 1018–1025 (1999).PubMedGoogle Scholar
  27. 27.
    E. Missov, C. Calzolari, and B. Pau, Circulating cardiac troponin I in severe congestive heart failure, Circulation 96, 2953–2958 (1997).PubMedGoogle Scholar
  28. 28.
    M. Galvani, F. Ottani, and D. Ferrini, et al., Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina, Circulation 95, 2053–2059 (1997).PubMedGoogle Scholar
  29. 29.
    C. W. Hamm, C. Heeschen, and B. Goldmann, et al., Benefit of abciximab in patients with refractory unstable angina in relation to serum troponin T levels: c7E3 Fab Antiplatelet Therapy in Unstable Refractory Angina (CAPTURE) study investigators, N. Engl. J. Med. 340, 1623–1629 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Stubbs, P. Collinson, and D. Moseley, et al., Prognostic significance of admission troponin T concentrations in patients with myocardial infarction, Circulation 94, 1291–1297 (1996).PubMedGoogle Scholar
  31. 31.
    J. E. D. Adams, G. S. Bodor, and V. G. Davila-Roman, et al., Cardiac troponin I: a marker with high specificity for cardiac injury, Circulation 88, 101–106 (1993).PubMedGoogle Scholar
  32. 32.
    F. M. Fink, N. Genser, and C. Fink, et al., Cardiac troponin T and creatine kinase MB mass concentrations in children receiving anthracycline chemotherapy, Med. Pediatr. Oncol. 25, 185–189 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    C. Spies, V. Haude, and R. Fitzner, et al., Serum cardiac troponin T as a prognostic marker in early sepsis, Chest 113, 1055–1063 (1998).PubMedGoogle Scholar
  34. 34.
    T. M. Guest, A. V. Ramanathan, and P. G. Tuteur, et al., Myocardial injury in critically ill patients: a frequently unrecognized complication, JAMA 273, 1945–1949 (1995).PubMedCrossRefGoogle Scholar
  35. 35.
    S. P. Rao, S. Miller, and R. Rosenbaum, et al., Cardiac troponin I and cardiac enzymes after electrophysiologic studies, ablations, and defibrillator implantations, Am. J. Cardiol. 84(4), 470, A9 (1999).CrossRefGoogle Scholar
  36. 36.
    J. J. Allan, R. D. Feld, and A. A. Russell, et al., Cardiac troponin I levels are normal or minimally elevated after transthoracic cardioversion, J. Am. Coll. Cardiol. 30, 1052–1056 (1997).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Zimmerman, R. Fromm, and D. Meyer, et al., Diagnostic marker cooperative study for the diagnosis of myocardial infarction, Circulation 99, 1671–1677 (1999).PubMedGoogle Scholar
  38. 38.
    J. Kamblock, L. Payot, and B. Iung, et al., Does rheumatic myocarditis really exists? Systematic study with echocardiography and cardiac troponin I blood levels, Eur. Heart J. 24, 855–862 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    B. Lauer, C. Niederau, and U. Kuhl, et al., Cardiac troponin T in the diagnosis and follow up of suspected myocarditis, Dtsch. Med. Wochenschr. 123, 409–417 (1998).PubMedCrossRefGoogle Scholar
  40. 40.
    J. Soongswang, K. Durongpisitkul, and S. Ratanarapee, et al., Cardiac troponin T: its role in the diagnosis of clinically suspected acute myocarditis and chronic in children, Pediatr. Cardiol. 23, 531–535 (2002).PubMedGoogle Scholar
  41. 41.
    S. Abe, S. Arima, and T. Yamashita, et al., Early assessment of reperfusion therapy using cardiac troponin T, J. Am. Coll. Cardiol. 23, 1382–1389 (1994).PubMedCrossRefGoogle Scholar
  42. 42.
    M. A. Karim, M. S. Shinn, and H. Oskarsson, et al., Significance of cardiac troponin T release after percutaneous transluminal coronary angioplasty, Am. J. Cardiol. 76, 521–523 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    B. Riou, S. Dreux, and S. Roche, et al., Circulating cardiac troponin T in potential heart transplant donors, Circulation 92, 409–414 (1995).PubMedGoogle Scholar
  44. 44.
    R. J. Aviles, A. T. Askari, and B. Lindahl, et al., Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction, N. Engl. J. Med. 346, 2047–2052 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Teruhiko Toyo-oka
    • 1
    • 2
  • Hiroyuki Kumagai
    • 1
    • 2
  1. 1.Department of Molecular CardiologyTohoku University Bioengineering Research Organization (TUBERO)Japan
  2. 2.Department of Pathophysiology and Internal Medicine, Tokyo University HospitalUniversity of TokyoTokyoJapan

Personalised recommendations