Heart Failure, Ischemia/Reperfusion Injury and Cardiac Troponin

  • R. John Solaro
  • Grace M. Arteaga
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


Over the forty years since its discovery, there has been a profound transition in thinking with regard to the role of troponin in the control of cardiac function. This transition involved a change in perception of troponin as a passive molecular switch responding to membrane controlled fluctuations in cytoplasmic Ca2+ to a perception of troponin as a critical element in signaling cascades that actively engage in control of cardiac function. Evidence demonstrating functionally significant developmental and mutant isoform switches and post-translational modifications of cardiac troponin complex proteins, troponin I (cTnI) and troponin T (cTnT) provided convincing evidence for a more complicated role of troponin in control of cardiac function and dynamics. The physiological role of these modifications of troponin is reviewed in this monograph and has also been reviewed elsewhere (Solaro and Rarick, 1998; Gordon et al., 2000; Solaro et al., 2002a; Kobayashi and Solaro, 2005). Our focus here is on studies related to modifications in troponin that appear important in the processes leading from compensated hypertrophy to heart failure. These studies reveal the potentially significant role of post-translational modifications of troponin in these processes. Another focus is on troponin as a target for inotropic agents. Pharmacological manipulation of troponin by small molecules remains an important avenue of approach for the treatment of acute and chronic heart failure (Kass and Solaro, 2006).


Cardiac Troponin Sarcomeric Protein Myosin Light Chain Phosphatase Familial Hypertrophic Cardiomyopathy Altered Phosphorylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.6. References

  1. Arteaga, G. M., Warren, C. M., Milutinovic, S., Martin, A. F., and Solaro, R. J., 2005, Specific enhancement of sarcomeric response to Ca2+ protects murine myocardium against ischemia/reperfusion dysfunction, Am. J. Physiol. Heart Circ. Physiol. 289:H2183–H2192.PubMedCrossRefGoogle Scholar
  2. Bokoch, G. M., 2003, Biology of the p21-activated kinases, Annu Rev Biochem. 72:743–781.PubMedCrossRefGoogle Scholar
  3. Bowling, N., Walsh, R. A., Song, G., Estridge, T., Sandusky, G. E., Fouts, R. L., Mintze, K., Pickard, T., Roden, R., Bristow, M. R., Sabbah, H. N., Mizrahi, J. L., Gromo, G., King, G. L., and Vlahos, C. J., 1999, Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart, Circulation 99:384–391.PubMedGoogle Scholar
  4. Burkart, E. M., Sumandea, M. P., Kobayashi, T., Nili, M., Martin, A. F., Homsher, E., and Solaro, R. J., 2003, Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity, J. Biol. Chem. 278:11265–11272.PubMedCrossRefGoogle Scholar
  5. Buscemi, N., Foster, D. B., Neverova, I., and Van Eyk, J. E., 2002, p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I, Circ. Res. 91:509–516.PubMedCrossRefGoogle Scholar
  6. Crozier, S. J., Vary, T. C., Kimball, S. R., and Jefferson, L. S., 2005, Cellular energy status modulates translational control mechanisms in ischemic-reperfused rat hearts, Am. J. Physiol. Heart Circ. Physiol. 289:H1242–H1250.PubMedCrossRefGoogle Scholar
  7. Dorn, G. W., 2nd, and Force, T., 2005, Protein kinase cascades in the regulation of cardiac hypertrophy, J. Clin. Invest. 115:527–537.PubMedCrossRefGoogle Scholar
  8. Du Toit, E. F., Muller, C. A., McCarthy, J., and Opie, L. H. 1999, Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart, J. Pharmacol. Exp. Ther. 290:505–514.PubMedGoogle Scholar
  9. Frey, N., and Olson, E. N., 2003, Cardiac hypertrophy: the good, the bad, and the ugly, Annu. Rev. Physiol. 65:45–79.PubMedCrossRefGoogle Scholar
  10. Goldspink, P. H., Montgomery, D. E., Walker, L. A., Urboniene, D., McKinney, R. D., Geenen, D. L., Solaro, R. J., and Buttrick, P. M., 2004, Protein kinase C-epsilon overexpression alters myofilament properties and composition during the progression of heart failure, Circ. Res. 95:424–432.PubMedCrossRefGoogle Scholar
  11. Gomes, A. V., and Potter, J. D., 2004, Molecular and cellular aspects of troponin cardiomyopathies, Ann. N. Y. Acad. Sci. 1015:214–224.PubMedCrossRefGoogle Scholar
  12. Gordon, A. M., Homsher, E., and Regnier, M., 2000, Regulation of contraction in striated muscle, Physio. Rev. 80:853–924.Google Scholar
  13. Herron, T. J., Korte, F. S., and McDonald, K. S., 2001, Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes, Circ. Res. 89:1184–1190.PubMedGoogle Scholar
  14. Hoshijima, M., Sah, V. P., Wang, Y., Chien, K. R., and Brown, J. H., 1998, The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase, J. Biol. Chem. 273:7725–7730.PubMedCrossRefGoogle Scholar
  15. Huang, L., Wolska, B. M., Montgomery, D. E., Burkart, E., Buttrick, P. M., and Solaro, R. J., 2001, Increased contractility and altered Ca2+-transients of mouse heart myocytes conditionally expressing PKC-beta II, Am. J. Physiol. (Cell). 280:C1114–C1120.Google Scholar
  16. Kass, D., and Solaro, R. J., 2006, Mechanisms and use of calcium sensitizing agents, Circulation 113:305–315.PubMedCrossRefGoogle Scholar
  17. Ke, Y., Huang, L., and Solaro, R. J., 2004, Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes, Circ. Res. 94:194–200.PubMedCrossRefGoogle Scholar
  18. Kentish, J. C., McCloskey, D. T., Layland, J., Palmer, S., Leiden, J. M., Martin, A. F., and Solaro, R. J., 2001, Phosphorylation of troponin I by protein kinase A accelerates relaxation and cross-bridge cycle kinetics in mouse ventricular muscle, Circ. Res. 88:1059–1065.PubMedGoogle Scholar
  19. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi K., 1996, Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248.PubMedCrossRefGoogle Scholar
  20. Kobayashi, N., Horinaka, S., Mita, S., Nakano, S., Honda, T., Yoshida, K., Kobayashi, T., and Matsuoka, H., 2002, Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat. Cardiovasc. Res. 55:757–767.PubMedCrossRefGoogle Scholar
  21. Kobayashi, T., and Solaro, R. J., 2005, Calcium, thin filaments, and integrative biology of cardiac contractility, Annu. Rev. Physiol. 67:39–67.PubMedCrossRefGoogle Scholar
  22. Layland, J., Grieve, D. J., Cave, A. C., Sparks, E., Solaro, R. J., and Shah, A. M., 2004, Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically, J. Physiol. 556:835–847.PubMedCrossRefGoogle Scholar
  23. Martin, A. M., Ball, K., Gao, L., Kumar, P. K., and Solaro, R. J., 1991, Identification and functional significance of troponin I isoforms in neonatal rat heart myofibrils, Circ. Res. 69:1244–1252.PubMedGoogle Scholar
  24. Metzger, J. M., and Westfall, M. V. 2001, Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation, Circ. Res. 94:146–158.CrossRefGoogle Scholar
  25. Mirza, M., Marston, S., Willott, R., Ashley, C., Mogensen, J., McKenna, W., Robinson, P., Redwood, C., and Watkins, H., 2005, Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype, J. Biol. Chem. 280:28498–28506.PubMedCrossRefGoogle Scholar
  26. Mogensen, J., Kubo, T., Duque, M., Uribe, W., Shaw, A., Murphy, R., Gimeno, J. R., Elliott, P., and McKenna, W. J., 2003, Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations, J. Clin. Invest. 111:209–216.PubMedCrossRefGoogle Scholar
  27. Nosek, T. M., Brotto, M. A., and Jin, J. P., 2004, Troponin T isoforms alter the tolerance of transgenic mouse cardiac muscle to acidosis, Arch. Biochem. Biophys. 430:178–184.PubMedCrossRefGoogle Scholar
  28. Pi, Y., Kemnitz, K. R., Zhang, D., Kranias, E. G., and Walker, J. W., 2002, Phosphorylation of troponin I controls cardiac twitch dynamics: evidence from phosphorylation site mutants expressed on a troponin I-null background in mice, Circ. Res. 90:649–656.PubMedCrossRefGoogle Scholar
  29. Pi, Y., Zhang, D., Kemnitz, K. R., Wang, H., and Walker, J. W., 2003, Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium, J. Physiol. 552:845–857.PubMedCrossRefGoogle Scholar
  30. Saggin, L., Gorza, L., Ausoni, S., and Schiaffino, S., 1989, Troponin I switching in the developing heart, J. Biol. Chem. 264:16299–16302.PubMedGoogle Scholar
  31. Sah, V. P., Hoshijima, M., Chien, K. R., and Brown, J. H., 1996, Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways, J. Biol. Chem. 271:31185–31190.PubMedCrossRefGoogle Scholar
  32. Samarel, A. M., 2005, Costameres, focal adhesions, and cardiomyocyte mechanotransduction, Am. J. Physiol. Heart Circ. Physiol. 289:H2291–H2301.PubMedCrossRefGoogle Scholar
  33. Scruggs, S. B., Walker, L. A., Lyu, T., Geenen, D. L., Solaro, R. J., Buttrick, P. M., and Goldspink, P. H., 2006, Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKC epsilon phosphorylation, J. Mol. Cell Cardiol. 40:465–473.PubMedCrossRefGoogle Scholar
  34. Senszaki, H., Isoda, T., Paolocci, N., Ekelund, U., Hare, J. M., and Kass, D. A., 2000, Improved mechanoenergetics and cardiac rest and reserve function of an in vivo failing heart by calcium sensitizer EMD-57033, Circulation 101:1040–1048.Google Scholar
  35. Sonntag, S., Sundberg, S., Lehtonen, L. A., and Kleber, F. X., 2004, The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia, J. Am. Coll. Cardiol. 43:2177–2182.PubMedCrossRefGoogle Scholar
  36. Solaro, R. J., 2001, Modulation of cardiac myofilament activity by protein phosphorylation, in: Handbook of Physiology: Section 2. The Cardiovascular System. Vol 1. The Heart, E. Page, H. Fozzard, R. J. Solaro, eds., Oxford University Press, New York, pp. 264–300.Google Scholar
  37. Solaro, R. J., Gambassi, G., Warshaw, D. M., Keller, M. R., Spurgeon, H. A., Beier, N., and Lakatta, E. G., 1993, Steroselective actions of thiadiazinones on dog cardiac myocytes and myofilaments, Circ. Res. 73:981–990.PubMedGoogle Scholar
  38. Solaro, R. J., Kumar, P., Blanchard, E. M., and Martin, A. M., 1986, Differential effects of pH on Ca2+ activation of myofilaments of adult and perinatal dog hearts: evidence for developmental differences in thin filament regulation, Circ. Res. 58:721–729.PubMedGoogle Scholar
  39. Solaro, R. J., Lee, J., Kentish, J., and Allen, D. A., 1988, Differences in the response of adult and neonatal heart muscle to acidosis, Circ. Res. 63:779–787.PubMedGoogle Scholar
  40. Solaro, R. J., and Rarick, H. M., 1998, Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments, Circ. Res. 83:471–480.PubMedGoogle Scholar
  41. Solaro, R. J., Varghese, J., Marian, A. J., and Chandra, M., 2002a, Molecular mechanisms of cardiac myofilament activation: Modulation by pH and a troponin T mutant R92Q, Basic Res. Cardiol. 97:I102–I110.PubMedCrossRefGoogle Scholar
  42. Solaro, R. J., Wolska, B. M., Arteaga, G., Martin, A. F., Buttrick, P., and de Tombe, P., 2002b, Modulation of Thin Filament Activity in Long and Short Term Regulation of Cardiac Function, in: Molecular Control Mechanisms in Striated Muscle Contraction, R. J. Solaro, R. L. Moss, eds, Kluwer Academic Publishers, Netherlands, pp. 291–327.Google Scholar
  43. Suematsu, N., Satoh, S., Kinugawa, S., Tsutsui, H., Hayashidani, S., Nakamura, R., Egashira, K., Makino, N., and Takeshita, A., 2001, Alpha1-adrenoceptor-Gq-RhoA signaling is upregulated to increase myofibrillar Ca2+ sensitivity in failing hearts, Am. J. Physiol. Heart Circ. Physiol. 281:H637–H646.PubMedGoogle Scholar
  44. Sumandea, M. P., Pyle, W. G., Kobayashi, T., de Tombe, P. P., and Solaro, R. J., 2003, Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T, J. Biol. Chem. 278:35135–35144.PubMedCrossRefGoogle Scholar
  45. Takimoto, E., Soergel, D. G., Janssen, P. M., Stull, L. B., Kass, D. A., and Murphy, A. M., 2004, Frequency-and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase A phosphorylation sites, Circ. Res. 94:496–504.PubMedCrossRefGoogle Scholar
  46. de Tombe, P. P., and Solaro, R. J., 2000, Integration of Cardiac Myofilament Activity and Regulation with Pathways Signaling Hypertrophy and Failure, Ann. Biomed. Eng. 28:991–1001.PubMedCrossRefGoogle Scholar
  47. Torsoni, A. S., Fonseca, P. M., Crosara-Alberto, D. P., and Franchini, K. G., 2003, Early activation of p160ROCK by pressure overload in rat heart, Am. J. Physiol. Cell Physiol. 284:C1411–C1419.PubMedGoogle Scholar
  48. Urboniene, D., Dias, F., Peña, J. R., Walker, L. A., Solaro, R. J., and Wolska, B. M., 2005, Expression of slow skeletal troponin I in adult mouse heart helps to maintain the left ventricular systolic function during Respiratory Hypercapnia, Circ. Res. 97:70–77.PubMedCrossRefGoogle Scholar
  49. Vahebi, S., Kobayashi, T., Warren, C. M., de Tombe, P. P., and Solaro, R. J., 2005, Functional effects of rho-kinase (ROCK-II)-dependent phosphorylation of specific sites on cardiac troponin, Circ. Res. 96:740–747.PubMedCrossRefGoogle Scholar
  50. Vahebi, S., Manxiang, L., de Tombe, P. P., Wang, Y., and Solaro, R. J., 2003, Activation of p38 MAP Kinase in transgenic mouse hearts depresses cardiac myofilament tension and ATPase rate, J. Mol. Cell Cardiol. 35:A43.Google Scholar
  51. Wang, X., and Dhalla, N. S., 2000, Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure, Mol. Cell. Biochem. 214:131–155.PubMedCrossRefGoogle Scholar
  52. Wang, X., Li, M., Spyracopoulos, L., Beier, N., Chandra, M., Solaro, R. J., and Sykes, B. D., 2001, Structure of the C-domain of human cardiac troponin C in complex with the Ca2+-sensitizing drug EMD 57003, J. Biol. Chem. 276:25456–25466.PubMedCrossRefGoogle Scholar
  53. Wolff, M. R., Buck, S. H., Stoker, S. W., Greaser, M. L., and Mentzer, R. M., 1996, Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation, J. Clin. Invest. 98:167–176.PubMedCrossRefGoogle Scholar
  54. Wolska, B. M., Vijayan, K., Arteaga, G. M., Konhilas, J. P., Phillips, R. M., Kim, R., Naya, T., Leiden, J. M., Martin, A. F., de Tombe, P. P., and Solaro, R. J., 2001, Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions, J. Physiol. 536:863–870.PubMedCrossRefGoogle Scholar
  55. Yumoto, F., Lu, Q. W., Morimoto, S., Tanaka, H., Kono, N., Nagata, K., Ojima, T., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., Nishita, K., Tanokura, M., and Ohtsuki, I., 2005, Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochem. Biophys. Res. Commun. 338:1519–1526.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • R. John Solaro
    • 1
  • Grace M. Arteaga
    • 1
    • 2
  1. 1.Department of Physiology and Biophysics (M/C 901)College of MedicineChicagoUSA
  2. 2.Department of Pediatrics University of Illinois at ChicagoCollege of MedicineChicagoUSA

Personalised recommendations