Structural and Functional Analysis of Troponins from Scallop Striated and Human Cardiac Muscles

  • Fumiaki Yumoto
  • Masaru Tanokura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


The Ca2+-regulation of scallop striated muscle contraction, a Ca2+-regulation mechanism that is linked to myosin, was first discovered by A. G. Szent-Györgyi and his colleagues. 1,2 In myosin-linked Ca2+-regulation, the Ca2+ -receptive site is the essential light chain of myosin, and the ATPase of the scallop myofibrils has been found to be desensitized to Ca2+ by removal of the regulatory light chain (RLC) of myosin in response to treatment with a divalent cation chelator (EDTA). At the same time, three components of troponin and tropomyosin have also been isolated from scallop striated muscle, and several of their biochemical properties have been investigated.3, 4, 5 In this troponin-linked Ca2+-regulation, the concurrent presence of all three components of troponin (troponins C, I, and T; TnC, TnI, and TnT) and tropomyosin are necessary for the regulation of actomyosin ATPase activity.6, 7, 8, 9, 10 The action of Ca2+ on TnC ultimately induces actomyosin ATPase activity. Troponin-linked Ca2+ -regulation is also desensitized by the removal of TnC in response to treatment with divalent cation chelators such as EDTA or CDTA. The mutual relation of these two types of Ca2+-regulations in scallop myofibrils was then investigated as follows.11 Desensitized scallop myofibrils were prepared by removing both RLC and TnC by treatment with a divalent cation chelator, CDTA, and the effects of reconstitution with RLC and/or TnC on the ATPase activity of the desensitized myofibrils were examined.


ATPase Activity Cardiac Troponin Regulatory Light Chain K178E Mutation Restrictive Cardiomyopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.5. References

  1. 1.
    A. G. Szent-Györgyi, E. M. Szentkiralyi, and J. Kendrick-Jonas, The light chains of scallop myosin as regulatory subunits, J. Mol. Biol. 74, 179–203 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    A. G. Szent-Györgyi, V. N. Kalabokis, and C. L. Perreault-Micale, Regulation by molluscan myosins. Mol. Cell. Biochem. 190, 55–62 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Ojima, and K. Nishita, Isolation of troponins from striated and smooth adductor muscles of Akazara scallop. J. Biochem. 100, 821–824 (1986).PubMedGoogle Scholar
  4. 4.
    T. Ojima, and K. Nishita, Troponin from Akazara scallop striated adductor muscles. J. Biol. Chem. 261, 16749–16754 (1986).PubMedGoogle Scholar
  5. 5.
    K. Nishita, H. Tanaka, and T. Ojima, T. Amino acid sequence of troponin C from scallop striated adductor muscle. J. Biol. Chem. 269, 3464–3468 (1994).PubMedGoogle Scholar
  6. 6.
    S. Ebashi, and M. Endo, Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18, 123–183 (1968).PubMedCrossRefGoogle Scholar
  7. 7.
    I. Ohtsuki, K. Maruyama, and S. Ebashi, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle, Adv. Protein Chem. 38, 1–67 (1986).PubMedGoogle Scholar
  8. 8.
    C. S. Farah, and F. C. Reinach, The troponin complex and regulation of muscle contraction. FASEB, J. 9, 755–767 (1995).Google Scholar
  9. 9.
    L. S. Tobacman, Thin filament-mediated regulation of cardiac contraction. Ann. Rev. Physiol. 58, 447–481 (1996).CrossRefGoogle Scholar
  10. 10.
    T. Kobayashi, and R. J. Solaro, Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu. Rev. Physiol. 67, 39–67 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Shiraishi, S. Morimoto, K. Nishita, T. Ojima, and I. Ohtsuki, Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca2+-sensitive ATPase activity of myofibrils from scallop striated muscle. J. Biochem. 126, 1020–1024 (1999).PubMedGoogle Scholar
  12. 12.
    A. S. Zot, J. D. Potter, and W. L. Strauss, Isolation and sequence of a cDNA clone for rabbit fast skeletal muscle troponin C. Homology with calmodulin and parvalbumin. J. Biol. Chem. 262, 15418–15421 (1987).PubMedGoogle Scholar
  13. 13.
    T. Ojima, N. Koizumi, K. Ueyama, A. Inoue, and K. Nishita, Functional role of Ca2+-binding site IV of scallop troponin C. J. Biochem. 128, 803–809 (2000).PubMedGoogle Scholar
  14. 14.
    T. Doi, A. Satoh, H. Tanaka, A. Inoue, F. Yumoto, M. Tanokura, I. Ohtsuki, K. Nishita, and T. Ojima, Functional importance of Ca2+-deficient N-terminal lobe of molluscan troponin C in troponin regulation. Arch. Biochem. Biophys. 436, 83–90 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    J. M. Wilkinson, and R. J. Grand, The amino-acid sequence of chicken fast-skeletal-muscle troponin I. Eur. J. Biochem. 82, 493–501 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Ojima, and K. Nishita, Biochemical characteristics of the Mr 52 000 component of Akazara scallop troponin. J. Biochem. 104, 207–210 (1988).PubMedGoogle Scholar
  17. 17.
    T. Ojima, H. Tanaka, and K. Nishita, Cyanogen bromide fragments of Akazara scallop Mr 52 000 troponin-I. J. Biochem. 108, 519–521 (1990).PubMedGoogle Scholar
  18. 18.
    H. Tanaka, T. Ojima, and K. Nishita, Amino acid sequence of troponin-I from Akazara scallop striated adductor muscle. J. Biochem. 124, 304–310 (1998).PubMedGoogle Scholar
  19. 19.
    O. Herzberg, and M. N. G. James, Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313, 653–659 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Sundaralingam, R. Bergstrom, G. Strasburg, S. T. Rao, P. Roychowdhury, M. Greaser, and B. C. Wang, Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227, 945–948 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    S. M. Gagné, S. Tsuda, M. X. Li, L. B. Smillie, and B. D. Sykes, Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat. Struct. Biol. 2, 784–789 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    C. M. Slupsky, and B. D. Sykes, NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 12, 15953–15964 (1995).CrossRefGoogle Scholar
  23. 23.
    D. G. Vassylyev, S. Takeda, S. Wakatsuki, K. Maeda, and Y. Maéda, Crystal structure of troponin C in complex with troponin I fragment at 2.3 Å — resolution. Proc. Natl. Acad. Sci. USA 95, 4847–4852 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Takeda, A. Yamashita, K. Maeda, and Y. Maéda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, and R. J. Fletterick, Ca2+-regulated structural changes in troponin. Proc. Natl. Acad. Sci. USA 102, 5038–5043 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Yumoto, M. Nara, H, Kagi, W. Iwasaki, T. Ojima, K. Nishita, K. Nagata, and M. Tanokura, Coordination structures of Ca2+ and Mg2+ in Akazara scallop troponin C in solution. FTIR spectroscopy of side-chain COO groups. Eur. J. Biochem. 268, 6284–6290 (2001).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Nara, F. Yumoto, K. Nagata, M. Tanokura, H. Kagi, T. Ojima, and K. Nishita, Fourier transform infrared spectroscopic study on the binding of Mg2+ to a mutant Akazara scallop troponin C (E142Q). Biopolymers 74, 77–81 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    F. Yumoto, K. Nagata, K. Adachi, N. Nemoto, T. Ojima, K. Nishita, I. Ohtsuki, and M. Tanokura, NMR structural study of troponin C C-terminal domain complexed with troponin I fragment from Akazara scallop. Adv. Exp. Med. Biol. 538, 195–201 (2003).PubMedGoogle Scholar
  29. 29.
    P. Güntert, C. Mumenthaler, and K. Wüthrich, Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    M. R. Nelson and W. J. Chazin, Structures of EF-hand Ca2+-binding poroteins: Diversity in the organization, packing and response to Ca2+ binding, Biometals 11, 297–318 (1998).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Tanaka, Y. Takeya, T. Doi, F. Yumoto, M. Tanokura, I. Ohtsuki, K. Nishita, and T. Ojima, Comparative studies on the functional roles of N-and C-terminal regions of molluskan and vertebrate troponin-I, FEBS J. 17, 4475–4486 (2005).CrossRefGoogle Scholar
  32. 32.
    S. Morimoto, F. Yanaga, R. Minakami, and I. Ohtsuki, Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy, Am. J. Physiol. 275, C200–C207 (1998).PubMedGoogle Scholar
  33. 33.
    F. Takahashi-Yanaga, S. Morimoto, K. Harada, R. Minakami, F. Shiraishi, M. Ohta, Q.-W. Lu, T. Sasaguri, and I. Ohtsuki, Functional consequences of the mutations in human cardiac troponin I gene found in familial hypertrophic cardiomyopathy, J. Mol. Cell. Cardiol. 3, 2095–2107 (2001).CrossRefGoogle Scholar
  34. 34.
    I. Ohtsuki, Molecular basis of calcium regulation of striated muscle contraction, Adv. Exp. Med. Biol. 565, 223–231 (2005).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Nakaura, F. Yanaga, I, Ohtsuki, and S. Morimoto, Effects of missense mutations Phe110Ile and Glu-244Asp in human cardiac troponin T on force generation in skinned cardiac muscle fibers. J. Biochem. 126, 457–460 (1999).PubMedGoogle Scholar
  36. 36.
    A. V. Gomes, and J. D. Potter, Molecular and cellular aspects of troponin cardiomyopathies, Ann. N. Y. Acad. Sci. 1015, 214–224 (2004).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Hoffmann, H. Schmidt-Traub, A. Perrot, K. J. Osterziel, and R. Gessner, First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum. Mutat. 17, 524 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    S. Morimoto, Q.-W. Lu, K. Harada, F. Takahashi-Yanaga, R. Minakami, M. Ohta, T. Sasaguri, and I. Ohtsuki, Ca2+-desensitizing effect of a deletion mutation ΔK210 in cardiac troponin T that causes familial dilated cardiomyopathy, Proc. Natl. Acad. Sci. USA 99, 913–918 (2002).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Mogensen, T. Kubo, M. Duque, W. Uribe, A. Shaw, R. Murphy, J. R. Gimeno, P. Elliott, and W. J. McKenna, Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations, J. Clin. Invest. 111, 209–216 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    S. S. Kushwaha, J. T. Fallon, and V. Fuster, Restrictive cardiomyopathy, N. Engl. J. Med. 336, 267–276 (1997).PubMedCrossRefGoogle Scholar
  41. 41.
    W. J. Vallins, N. J. Brand, N. Dabhade, G. Butler-Brown, M. H. Yacoub, and P. J. Barton, Molecular cloning of human cardiac troponin I using polymerase chain reaction, FEBS Lett. 270, 57–61 (1990).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Ausoni, M. Campione, A. Picard, P. Moretti, M. Vitadello, C. De Nardi, and S. Schiaffino, Structure and regulation of the mouse cardiac troponin I gene, J. Biol. Chem. 269, 339–346 (1994).PubMedGoogle Scholar
  43. 43.
    AJ842179 NCBI, Bos taurus tnni3 gene for cardiac troponin I, exons 1–8.Google Scholar
  44. 44.
    J. M. Wilkinson, and R. J. Grand, The amino acid sequence of troponin I from rabbit skeletal muscle, Biochem. J. 149, 493–496 (1975).PubMedGoogle Scholar
  45. 45.
    R. B. Quaggio, J. A. Ferro, P. B. Monteiro, and F. C. Reinach, Cloning and expression of chicken skeletal muscle troponin I in Escherichia coli: the role of rare codons on the expression level, Protein Sci. 2, 1053–1056 (1993).PubMedCrossRefGoogle Scholar
  46. 46.
    H. Syska, J. M. Wilkinson, R. J. Grand, and S. V. Perry, The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit, Biochem. J. 153, 375–387 (1976).PubMedGoogle Scholar
  47. 47.
    C. Seidman et al., CardioGenomics, Mutation Database, Cardiac troponin I URL: Scholar
  48. 48.
    H. M. Rarick, X.-H. Tu, R. J. Solaro, and A. F. Martin, The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils, J. Biol. Chem. 272, 26887–26892 (1997).PubMedCrossRefGoogle Scholar
  49. 49.
    D. B. Foster, T. Noguchi, P. VanBuren, A. M. Murphy, and J. E. Van Eyk, C-terminal truncation of cardiac troponin I causes divergent effects on ATPase and force: implications for the pathophysiology of myocardial stunning, Circ. Res. 93, 917–924 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    F. Yumoto, Q. W. Lu, S. Morimoto, H. Tanaka, N. Kono, K. Nagata, T. Ojima, F. Takahashi-Yanaga, Y. Miwa, T. Sasaguri, K. Nishita, M. Tanokura, I. Ohtsuki. Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy, Biochem. Biophys. Res. Commun. 338, 1519–1526 (2005).PubMedCrossRefGoogle Scholar
  51. 51.
    S. Morimoto, and I. Ohtsuki, Ca2+-and Sr2+-sensitivity of the ATPase activity of rabbit skeletal muscle myofibrils: effect of the complete substitution of troponin C with cardiac troponin C, calmodulin, and parvalbumins, J. Biochem. 101, 230–291 (1987).Google Scholar
  52. 52.
    M. Hatakenaka, and I. Ohtsuki, Replacement of three troponin components with cardiac troponin components within single glycerinated skeletal muscle fibers, Biochem. Biophys. Res. Commun. 181, 1022–1027 (1991).PubMedCrossRefGoogle Scholar
  53. 53.
    M. Hatakenaka and I. Ohtsuki, Effect of removal and reconstitution of troponins C and I on the Ca2+-activated tension development of single glycerinated rabbit skeletal muscle fibers, Eur. J. Biochem. 205, 985–993 (1992).PubMedCrossRefGoogle Scholar
  54. 54.
    A. V. Gomes, J. Liang, and J. D. Potter, Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development, J. Biol. Chem. 280, 30909–30915 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    K. Murakami, F. Yumoto, S. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol. 352, 178–201 (2005).PubMedCrossRefGoogle Scholar
  56. 56.
    R. Koradi, M. Billeter, and K. Wüthrich, MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph. 14, 51–55 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Fumiaki Yumoto
    • 1
    • 2
  • Masaru Tanokura
    • 1
  1. 1.Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo
  2. 2.Department of Physiology IIThe Jikei University School of MedicineTokyoJapan

Personalised recommendations