Skip to main content

Calcium Structural Transition of Troponin in the Complexes, on the Thin Filament, and in Muscle Fibres, as Studied By Site-Directed Spin-Labelling EPR

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

12.1. Abstract

We have measured the intersite distance, side-chain mobility and orientation of specific site(s) of troponin (Tn) complex on the thin filaments or in muscle fibres as well as in solution by means of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR). We have examined the Ca2+-induced movement of the B and C helices relative to the D helix in a human cardiac (hc)TnC monomer state and hcTnC-hcTnI binary complex. An interspin distance between G42C (B helix) and C84 (D helix) was 18.4 Å in the absence of Ca2+. The distance between Q58C (C helix) and C84 (D helix) was 18.3 Å. Distance changes were observed by the addition of Ca2+ and by the formation of a complex with TnI. Both Ca2+ and TnI are essential for the full opening ∼3 Å of the N-domain in cardiac TnC.

We have determined the in situ distances between C35 and C84 by measuring pulsed electron-electron double resonance (PELDOR) spectroscopy. The distances were 26.0 and 27.2 Å in the monomer state and in reconstituted fibres, respectively. The addition of Ca2+ decreased the distance to 23.2 Å in fibres but only slightly in the monomer state, indicating that Ca2+ binding to the N-lobe of hcTnC induced a larger structural change in muscle fibres than in the monomer state.

We also succeeded in synthesizing a new bifunctional spin labels that is firmly fixed on a central E-helix (94C–101C) of skeletal(sk)TnC to examine its orientation in reconstituted muscle fibres. EPR spectrum showed that this helix is disordered with respect to the filament axis.

We have studied the calcium structural transition in skTnI and tropomyosin on the filament by SDSL-EPR. The spin label at a TnI switch segment (C133) showed three motional states depending on Ca2+ and actin. The data suggested that the TnI switch segment binds to TnC N-lobe in +Ca2+ state, and that in −Ca2+ state it is free in TnC-I-T complex alone while fixed to actin in the reconstituted thin filaments. In contrast, the side chain spin labels along the entire tropomyosin molecule showed no Ca2+-induced mobility changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.6. References

  1. J. Gergely, Molecular switches in troponin, Adv. Exp. Med. Biol. 453, 169–176 (1998).

    PubMed  CAS  Google Scholar 

  2. S. Ebashi, and M. Endo, Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  3. S. S. Lehrer, and M. A. Geeves, The muscle thin filament as a classical cooperative/allosteric regulatory system, J. Mol. Biol. 277, 1081–1089 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. A. S. Zot, and J. D. Potter, Reciprocal coupling between troponin C and myosin crossbridge attachment, Annu. Rev. Biophys. Biophys. Chem. 16, 535–559 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. T. Tao, B. J. Gong, and P. C. Leavis, Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments, Science 247, 1339–1341 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. S. V. Perry, Troponin I: inhibitor or facilitator, Mol. Cell. Biochem. 190, 9–32 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. O. Herzberg, and M. N. James, Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution, J. Mol. Biol. 203, 761–779 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. D. G. Vassylyev, S. Takeda, S. Wakatsuki, K. Maeda, and Y. Maeda, Crystal structure of troponin C in complex with troponin I fragment at 2.3 Å-resolution, Proc. Natl. Acad. Sci. USA 95, 4849–4852 (1998).

    Article  Google Scholar 

  9. S. M. Gagne, S. Tsuda, M. X. Li, L. B. Smillie, and B. D. Sykes, Structures of the troponin C regulatory domains in the apo and calcium-saturated states, Nat. Struct. Biol. 2, 784–789 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. C. M. Slupsky, and B. D. Sykes, Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy, Biochemistry 34, 15953–15964 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. L. Spyracopoulos, M. X. Li, S. K. Sia, S. M. Gagne, M. Chandra, R. J. Solaro, and B. D. Sykes, Calciuminduced structural transition in the regulatory domain of human cardiac troponin C, Biochemistry 36, 12138–12146 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. R. T. McKay, J. R. Pearlstone, D. C. Corson, S. M. Gagne, L. B. Smillie, and B. D. Sykes, Structure and interaction site of the regulatory domain of troponin C when complexed with the 96–148 region of troponin-I, Biochemistry 37, 12419–12130 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. M. X. Li, L. Spyracopoulos, and B. D. Sykes, Binding of cardiac troponin-I 147–163 induces a structural opening in human cardiac troponin C, Biochemistry 38, 8289–8298 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. X. Wang, M. X. Li, and B. D. Sykes, Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I 147–163 and bepridil, J. Biol. Chem. 277, 31124–31133 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. S. K. Sia, M. X. Li, L. Spyracopoulos, S. M. Gagne, W. Liu, J. A. Putkey, and B. D. Sykes, Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain, J. Biol. Chem. 272, 18216–18221 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. W. J. Dong, J. Xing, M. Villain, M. Hellinger, J. M. Robinson, M. Chandra, R. J. Solaro, P. K. Umeda, and H. C. Cheung, Conformation of the regulatory domain of cardiac muscle troponin C in its complex with cardiac troponin I, J. Biol. Chem. 274, 31382–31390 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature 424, 35–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, R. J. Fletterick, Ca2+-regulated structural chanS. ges in troponin, Proc. Natl. Acad. Sci. USA 102, 5038–5043 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. W. J. Dong, J. M. Robinson, S. Stagg, J. Xing, and H. C. Cheung, Ca2+-induced conformational transition in the inhibitory and regulatory regions of cardiac troponin I, J. Biol. Chem. 278, 8686–8692 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. M. Miki, T. Kobayashi, H. Kimura, A. Hagiwara, H. Hai, and Y. Maeda, Ca2+-induced distance change between points on actin and troponin in skeletal muscle in filaments estimated by fluorescence energy transfer spectroscopy, J. Biochem. 123, 324–331 (1998).

    PubMed  CAS  Google Scholar 

  21. R. Craig, and W. Lehman, Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments, J. Mol. Biol. 311, 1027–1036 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. A. Narita, T. Yasunaga, T. Ishikawa, K. Mayanagi, and T. Wakabayashi, Ca2+-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy, J. Mol. Biol. 308, 241–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. C. Bacchiocchi, and S. S. Lehrer, Ca2+-induced movement of tropomyosin in skeletal muscle thin filaments observed by multi-site FRET, Biophys. J. 82, 1524–1536 (2002).

    PubMed  CAS  Google Scholar 

  24. M. Miki, H. Hai, K. Saeki, Y. Shitaka, K. Sano, Y. Maeda, and T. Wakabayashi, Fluorescence resonance energy transfer between points on actin and the C-Terminal region of tropomyosin in skeletal muscle thin filaments, J. Biochem. 136, 39–47 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Tonomura, S. Watanabe, and M. Morales, Conformational changes in the molecular control of muscle contraction, Biochemistry 8, 2171–2176 (1969).

    Article  PubMed  CAS  Google Scholar 

  26. S. Ebashi, S. Onishi, S. Abe, and K. Maruyama, A spin-label study on calcium-induced conformational changes of troponin components, J. Biochem. 75, 211–213 (1974).

    PubMed  CAS  Google Scholar 

  27. T. Arata, and H. Shimizu, Spin-label study of actin-myosin-nucleotide interactions in contracting glycerinated muscle fibers. J. Mol. Biol. 151, 411–437 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. V. A. Barnett, and D. D. Thomas, Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis. Biochemistry 26, 314–323 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. K. Sugata, M. Nakamura, S. Ueki, P. G. Fajer, and T. Arata, ESR reveals the mobility of the neck linker in dimeric kinesin, Biochem. Biophys. Res. Commun. 314, 447–451 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. J. D. Potter, J. C. Seidel, P. Leavis, S. S. Lehrer, and J. Gergely, Effect of Ca2+ binding on troponin C. Changes in spin label mobility, extrinsic fluorescence, and sulfhydryl reactivity, J. Biol. Chem. 251, 7551–7556 (1976).

    PubMed  CAS  Google Scholar 

  31. H. C. Li, K. Hideg, and P. G. Fajer, The mobility of troponin C and troponin I in muscle, J. Mol. Recognit. 10, 194–201 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. D. D. Thomas, and R. Cooke, Orientation of spin-labeled myosin heads in glycerinated muscle fibers, Biophys. J. 32, 891–906 (1980).

    Article  PubMed  CAS  Google Scholar 

  33. T. Arata, Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers, J. Mol. Biol. 214, 471–478 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. D. Szczesna, and P. G. Fajer, The tropomyosin domain is flexible and disordered in reconstituted thin filaments, Biochemistry 34, 3614–3620 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. H. C. Li, and P. G. Fajer, Orientational changes of troponin C associated with thin filament activation, Biochemistry 33, 14324–14332 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. H. C. Li, and P. G. Fajer, Structural coupling of troponin C and actomyosin in muscle fibers, Biochemistry 37, 6628–6635 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. L. J. Brown, K. L. Sale, R. Hills, C. Rouviere, L. Song, X. Zhang, and P. G. Fajer, Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance, Proc. Natl. Acad. Sci. USA 99, 12765–12770 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. P. P. Borbat, H. S. McHaourab, and J. H. Freed, J. Am. Chem. Soc. 124, 5304–5314 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. R. L. Moss, G. G. Giulian, and M. L. Greaser, Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers, J. Biol. Chem. 257, 8588–8591 (1982).

    PubMed  CAS  Google Scholar 

  40. S. Morimoto, and I. Ohtsuki, Ca2+-and Sr2+-sensitivity of the ATPase activity of rabbit skeletal myofibrils: effect of the complete substitution of troponin C with cardiac troponin C, calmodulin, and parvalbumins, J. Biochem. 101, 291–301 (1987).

    PubMed  CAS  Google Scholar 

  41. R. L. Moss, Ca2+ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins, Circulation Research 70, 865–884 (1992).

    PubMed  CAS  Google Scholar 

  42. M. Irving, T. St. Claire Allen, C. Sabido-David, J. S. Craik, B. Brandmeier, J. Kendrick-Jones, J. E. Corrie, D. R. Trentham, and Y. E. Goldman, Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle, Nature 375, 688–691 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. R. E. Ferguson, Y. B. Sun, P. Mercier, A. S. Brack, B. D. Sykes, J. E. Corrie, D. R. Trentham, and M. Irving, In situ orientations of protein domains: troponin C in skeletal muscle fibers, Mol. Cell. 11, 865–874 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. S. Ueki, M. Nakamura, T. Komori, T. Arata, Site-directed spin labeling electron paramagnetic resonance study of the calcium-induced structural transition in the N-domain of human cardiac troponin C complexed with troponin I, Biochemistry 44, 411–416 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. M. Nakamura, S. Ueki, H. Hara, and T. Arata, Calcium structural transition of human cardiac troponin C in reconstituted muscle fibres as studied by site-directed spin labelling, J. Mol. Biol. 348, 127–137 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. S. Chatani, M. Nakamura, H. Akahane, N. Kohyama, M. Taki, T. Arata, and Y. Yamamoto, Synthesis of C 2-chiral bifunctional spin labels and their application to troponin C, Chem. Commun. 1880–1882 (2005).

    Google Scholar 

  47. T. Aihara, S. Ueki, M. Nakamura, and T. Arata, Calcium-dependent movement of troponin I between troponin C and actin as revealed by spin-labeling EPR, Biochem. Biophys. Res. Commun. 349, 449–456 (2006).

    Article  CAS  Google Scholar 

  48. K. Murakami, F. Yumoto, S. Y. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol. 352, 178–201 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Arata, T., Aihara, T., Ueda, K., Nakamura, M., Ueki, S. (2007). Calcium Structural Transition of Troponin in the Complexes, on the Thin Filament, and in Muscle Fibres, as Studied By Site-Directed Spin-Labelling EPR. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_12

Download citation

Publish with us

Policies and ethics