Vascular engraftment and repair by adult non-hematopoietic stem/progenitor cells

  • Jeffrey L. Spees
Conference paper


Recent advances in our understanding of adult non-hematopoietic stem/progenitor cell biology may lead to powerful new therapies for vascular repair and for the treatment of ischemic tissue injury. This chapter will provide an overview of several non-hematopoietic stem/progenitor cell types that engraft and contribute to the vasculature (mesenchymal stem cells, MSCs; endothelial and smooth muscle progenitor cells, EPCs and SPCs; adipose-derived stem cells, ADSCs; and cardiac stem cells, CSCs) and mechanisms of angiogenic and postnatal vasculogenic repair by adult stem/progenitor cells.


Mesenchymal Stem Cell Hepatocyte Growth Factor Endothelial Progenitor Cell Cardiac Stem Cell Cardiac Side Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abedin M, Tintut Y, Demer LL (2004) Mesenchymal stem cells and the artery wall. Circ Res 95:671–676PubMedCrossRefGoogle Scholar
  2. Aicher A, Zeiher AM, Dimmeler S (2005) Mobilizing endothelial progenitor cells. Hypertension 45:321–325PubMedCrossRefGoogle Scholar
  3. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451–1463PubMedCrossRefGoogle Scholar
  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichlei B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  5. Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB, Wong MH, Fleming WH (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103:13–19PubMedCrossRefGoogle Scholar
  6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B. Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRefGoogle Scholar
  7. Caplice NM, Bunch TJ, Stalboerge PG, Wang S, Simper D, Miller DV, Russell SJ. Litzow MR, Edwards WD (2003) Smooth muscle cells in human coronarv atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA 100:4754–4759PubMedCrossRefGoogle Scholar
  8. Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R, El Makhfl N, Urbich C. Peters T, Scharffetter-Kochanek K, Zeiher AM, Chavakis T, Dimmeler S (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201:63–72PubMedCrossRefGoogle Scholar
  9. Dexter TM, Spooncer E, Schofield R, Lord BI, Simmons P (1984) Haemopoietic stem cells and the problem of self-renewal. Blood Cells 10:315–339PubMedGoogle Scholar
  10. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutteri H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397PubMedCrossRefGoogle Scholar
  11. Friedenstein AJ, Chailakhyan RK, Latsinik, NV, Panasyuk, AF, Keiliss-Borok IV (1974a) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340PubMedCrossRefGoogle Scholar
  12. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974b) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92PubMedGoogle Scholar
  13. Friedenstein AJ, Gorskaja U, Kalugina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 4:267–274PubMedGoogle Scholar
  14. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34-/CD133+/VEGFR-2+endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98:e20–e25PubMedCrossRefGoogle Scholar
  15. George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G (2005) Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 25:2636–2641PubMedCrossRefGoogle Scholar
  16. Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T, Sher F, O’Rourke F, Nasser AM (2004) Endothelial progenitor cells during cerebrovascular disease. Stroke 36:151–153PubMedCrossRefGoogle Scholar
  17. Gregory CA, Prockop DJ, Spees JL (2005) Non-hematopoietic bone marrow stem cells: Molecular control of expansion and differentiation. Exp Cell Res 306:330–335PubMedCrossRefGoogle Scholar
  18. Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K (2005) Bone marrowderived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest 127:1793–1798PubMedCrossRefGoogle Scholar
  19. Ingram DA, Caplice NM, Yodar MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531PubMedCrossRefGoogle Scholar
  20. Ji JF, He BP, Dheen ST, Tay SS (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427PubMedCrossRefGoogle Scholar
  21. Jiang S, Walker L, Afentoulis M, Anderson DA, Jauron-Mills L, Corless CL, Fleming WH (2004) Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci U S A 2004 Nov 30; 101(48): 16891–16896CrossRefGoogle Scholar
  22. Kang YJ, Jeon ES, Song HY, Woo JS, Jung JS, Kim YK, Kim JH (2005) Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 95:1135–1145PubMedCrossRefGoogle Scholar
  23. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004a) Marrowderived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685PubMedCrossRefGoogle Scholar
  24. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004b) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549PubMedCrossRefGoogle Scholar
  25. Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 32:1238–1245PubMedCrossRefGoogle Scholar
  26. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 109:220–226PubMedCrossRefGoogle Scholar
  27. Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R, Prockop DJ (2006) A subset of human rapidly self-renew ing marrow stromal cells preferentially engraft in mice. Blood 107:2153–2161PubMedCrossRefGoogle Scholar
  28. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110:349–355PubMedCrossRefGoogle Scholar
  29. Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R, Fine A, Liao R (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97:1090–1092PubMedCrossRefGoogle Scholar
  30. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itoh J, Kato S, Ito M, Hotta T, Ando K (2006) Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. Mar 1; 107(5): 1878–1887. Epub 2005 Nov 10.PubMedCrossRefGoogle Scholar
  31. Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108:889–895PubMedCrossRefGoogle Scholar
  32. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135PubMedCrossRefGoogle Scholar
  33. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y (2005) Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 25:2542–2547PubMedCrossRefGoogle Scholar
  34. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384PubMedCrossRefGoogle Scholar
  35. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultures of adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857–4861PubMedCrossRefGoogle Scholar
  36. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31-but Not CD31 + cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61PubMedCrossRefGoogle Scholar
  37. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  38. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663PubMedCrossRefGoogle Scholar
  39. Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276:71–74PubMedCrossRefGoogle Scholar
  40. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci U S A 100Suppl 1:11917–11923PubMedCrossRefGoogle Scholar
  41. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15PubMedCrossRefGoogle Scholar
  42. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 109:1292–1298PubMedCrossRefGoogle Scholar
  43. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S (2005) CD14+CD341ow cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97:314–322PubMedCrossRefGoogle Scholar
  44. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409PubMedCrossRefGoogle Scholar
  45. Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M, Ono M, Watanabe J, Shirato K, Ishii N, Sugamura K, Shimokawa H (2006) Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 113:1442–1450PubMedCrossRefGoogle Scholar
  46. Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U, Dimmeler S, Zeiher AM (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events. Proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987PubMedCrossRefGoogle Scholar
  47. Sekiya I, Vuoristo JT, Larson BL, and Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99:4397–4402PubMedCrossRefGoogle Scholar
  48. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18: 696–704PubMedCrossRefGoogle Scholar
  49. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779PubMedGoogle Scholar
  50. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156PubMedCrossRefGoogle Scholar
  51. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204PubMedCrossRefGoogle Scholar
  52. Simper D, Wang S, Deb A, Holmes D, McGregor C, Frantz R, Kushwaha SS, Caplice NM (2003) Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of non-cardiac origin are enriched in transplant atherosclerosis. Circulation 107:143–149CrossRefGoogle Scholar
  53. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by SDF-1-CXCR4 and HGF-c-met axes and involves matrix metalloproteinases. Stem Cells [Epub ahead of print]Google Scholar
  54. Sugiyama S, Kugiyama K, Nakamura S, Kataoka K, Aikawa M, Shimizu K, Koide S, Mitchell RN, Ogawa H, Libby P (2005) Characterization of smooth muscle-like cells in circulating human peripheral blood. AtherosclerosisGoogle Scholar
  55. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673PubMedCrossRefGoogle Scholar
  56. Urbich C, Dimmeler S (2004) Endothelial progenitor cells. Characterization and role in vascular biology. Circ Res 95:343–353PubMedCrossRefGoogle Scholar
  57. Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR, Vajkoczy P, Hofmann WK, Peters C, Pennacchio LA, Abolmaali ND, Chavakis E, Reinheckel T, Zeiher AM, Dimmeler S (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 11: 206–213PubMedCrossRefGoogle Scholar
  58. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103: 2885–2890PubMedGoogle Scholar
  59. Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arenzana-Seisdesdos F, Aicher A, Heeschen C, Fichtlscherer S, Zeiher AM, Dimmeler S (2005) Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 97:1142–1151PubMedCrossRefGoogle Scholar
  60. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645PubMedCrossRefGoogle Scholar
  61. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of Monocrotaline-Induced Pulmonary Arterial Hypertension Using Bone Marrow-Derived Endothelial-Like Progenitor Cells. Efficacy of Combined Cell and eNOS Gene Therapy in Established Disease. Circ Res 96:442–450PubMedCrossRefGoogle Scholar
  62. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar
  63. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jeffrey L. Spees
    • 1
  1. 1.Department of Medicine, Cardiovascular Research Institute, Stem Cell CoreUniversity of VermontColchesterUSA

Personalised recommendations