• Serge Morand
  • Salah Bouamer
  • Jean-Pierre Hugot

Concluding remarks

Nematodes are greatly diverse in terms of species number but also in various kinds of life-cycle, modes of infection and life-history traits. This diversity is far for being completely known. Hence, recently, Clarke et al. (2004) presented evidence that an un-described nematode parasite of the very well investigated wood mouse Apodemus sylvaticus may be sexually transmitted. These authors found larval nematodes in the epididymides of males, which suggests that they would be transmitted to females during ejaculation.

In order to better understand the origins of all these facets of nematode biodiversity, we need a more detailed phylogenetic framework of this phylum. By mapping parasite traits onto the nematode phylogeny, we will better estimate the phylogenetical constraints and the ecological adaptation that may have shaped the diversity of nematodes, and particularly their interactions with small mammals.

Although rarely causing the death of their hosts, nematodes have the capacity to alter both the physiology and the behaviour of their hosts. Nematodes can regulate the population dynamics of their hosts, and this may contribute to the extinction spiral of small host populations (see Christe et al. in this volume), although much more experimental and theoretical work is needed. Finally, if nematodes are a threat to biodiversity, they are also of great concern with regards to human health (see Casanova and Ribas; Leirs and Singleton in this volume).


Small Mammal Parasitic Nematode Paratenic Host Mouse Population Parasitic Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson ML (1986) Modes of transmission and evolution of life histories in zooparasitic Nematodes. Can J Zool 64:1375–1384CrossRefGoogle Scholar
  2. Adamson ML (1989) Evolutionary biology of the Oxyurida (Nematoda): Biofacies of a haplodiploid taxon. Adv Parasitol 28:175–228PubMedCrossRefGoogle Scholar
  3. Anderson RC (1988) Nematode transmission patterns. J Parasitol 74:30–45PubMedCrossRefGoogle Scholar
  4. Anderson RC (1999) Nematode parasites of vertebrates. Their development and Transmission. CABI, WallingfordGoogle Scholar
  5. Anderson RC, Chabaud AG, Willmott S (eds) (1974–1983) CIH keys to the nematode parasites of vertebrates. Commonwealth Agricultural Bureaux, Farnham RoyalGoogle Scholar
  6. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other molting Animals. Nature 387:489–493PubMedCrossRefGoogle Scholar
  7. Behnke JM, Parish HA (1979) Nematospiroides dubius: Arrested development of larvae in immune mice. Exp Parasitol 47:116–127PubMedCrossRefGoogle Scholar
  8. Blaxter ML, de Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75PubMedCrossRefGoogle Scholar
  9. Chabaud AG (1955) Essai d’interprétation phylétique des cycles évolutifs chez nematodes parasites des vertebras. Ann Parasitol Hum Comp 30:83–126PubMedGoogle Scholar
  10. Chabaud A, Bain O, Hugot J-P, Rausch RL, Rausch VR (1983) Organe de Man et insémination traumatique. Rev Nematol 6:127–131Google Scholar
  11. Clarke JR, Anderson TJC, Bandi C (2004) Sexual transmission of a nematode parasite of wood mice (Apodemus sylvaticus)? Parasitology 128: 561–568PubMedCrossRefGoogle Scholar
  12. De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee D (ed) The biology of nematodes. Harwood Acad Publ, Reading, pp 1–30Google Scholar
  13. Gemmill AW, Skørping A, Read AF (1999) Optimal timing of first reproduction in parasitic nematodes. J Evol Biol 12:1148–1156CrossRefGoogle Scholar
  14. Hammond PM (1992) Species inventory. In: Groombridge B (ed) Global diversity, status of the earth’s living resources. Chapman and Hall, London, pp 17–39Google Scholar
  15. Harvey SC, Gemmill AW, Read AF, Viney ME (2000) The control of morph development in the parasitic nematode Strongyloides ratti. Proc R Soc Lond B 267:2057–2063CrossRefGoogle Scholar
  16. Hernandez AD, Sukhdeo MVK (1995) Host grooming and the transmission strategy of Heligmosomoides polygyrus. J Parasitol 81:856–869CrossRefGoogle Scholar
  17. Hugot J-P (1982) Sur le genre Hilgertia (Oxyuridae, Nematoda) parasite de rongeurs Ctenodactylidae. Bull Mus Hist Nat Paris 4: 419–431Google Scholar
  18. Hugot J-P, Bain O, Cassone J (1982). Insémination traumatique et tube de ponte chez l’oxyure parasite du lapin domestique. C R Acad Sci Paris 294:707–710Google Scholar
  19. Hugot J-P, Baujard P, Morand S (2001) Biodiversity in helminths and nematodes as a field of study: An overview. Nematology 3:1–10CrossRefGoogle Scholar
  20. Kavaliers M, Colwell DD (1995) Odours of parasitized males induce adverse responses in female mice. Anim Behav 50:1161–1169CrossRefGoogle Scholar
  21. Kavaliers M, Choleris E, Pfaff DW (2005) Genes, odours and the recognition of parasitized individuals by rodents. Trends Parasitol 21:423–429PubMedCrossRefGoogle Scholar
  22. Kristan DM (2004) Intestinal nematode infection affects host life history and offspring susceptibility to parasitism. J Anim Ecol 73:227–238CrossRefGoogle Scholar
  23. Maupas EF (1900) Modes et formes de reproduction des nématodes. Arch Zool Exp Gen 7:563–628Google Scholar
  24. May RM (1988) How many species are there on the Earth? Science 241:1441–1449CrossRefPubMedGoogle Scholar
  25. McCallum HI, Singleton GR (1989) Models to assess the potential of Capillaria Hepatica to control outbreaks of house mice. Parasitology 98:425–437PubMedGoogle Scholar
  26. Mitreva M, McCarter JP, Martin J (2004) Comparative genomics of gene expression in the parasitic and free-living nematodes Strongyloides stercoralis and Caenorhabditis elegans. Genome Res 14:209–220PubMedCrossRefGoogle Scholar
  27. Morand S (1996) Life-history traits in parasitic nematodes: A comparative approach for the search of invariants. Funct Ecol 10:210–218CrossRefGoogle Scholar
  28. Morand S, Poulin R (2000) Optimal time to patency in parasitic nematodes: Host mortality matters. Ecol Let 3:186–190CrossRefGoogle Scholar
  29. Morand S, Poulin R (2002) Body size-density relationships and species diversity in parasitic nematodes: Patterns and likely processes. Evol Ecol Res 4:951–961.Google Scholar
  30. Morand S, Sorci G (1998) Determinants of life-history evolution in nematodes. Parasitol Today 14:193–196PubMedCrossRefGoogle Scholar
  31. Morand S, Legendre P, Gardner SL, Hugot J-P (1996) Body size evolution of oxyurid parasites: The role of hosts. Oecologia 107:274–282CrossRefGoogle Scholar
  32. Mueller-Graf C, Durand P, Feliu C, Hugot J-P, Renaud F, Santalla F, Morand S (1999) Genetic variability and epidemiology of two species of nematodes (Heligmosomoides polygyrus and Syphacia stroma) of the same host (Apodemus sp.) Parasitology 118:425–432CrossRefGoogle Scholar
  33. Murray DL, Cary JR, Keith LB (1997) Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation J Anim Ecol 66:250–264CrossRefGoogle Scholar
  34. Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75:277–293PubMedCrossRefGoogle Scholar
  35. Prociv, P (1989) Toxocara pteropodis and visceral larva migrans. Parasitol Today 5:106–109PubMedCrossRefGoogle Scholar
  36. Read AF, Skørping A (1995) The evolution of tissue migration by parasitic nematode Larvae. Parasitology 111:359–371PubMedGoogle Scholar
  37. Scott ME (1987) Regulation of mouse colony abundance by Heligmosomoides polygyrus. Parasitology 95:111–124PubMedCrossRefGoogle Scholar
  38. Singleton GR, Chambers LK (1996) A manipulative field experiment to examine the effect of Capillaria hepatica (Nematoda) on wild mouse populations in southern Australia. Int J Parasit 26:383–398CrossRefGoogle Scholar
  39. Singleton GR, McCallum HI (1990) The potential of Capillaria hepatica to control mouse plagues. Parasitol Today 6:190–193PubMedCrossRefGoogle Scholar
  40. Singleton GR, Spratt DM (1986) The effects of Capillaria hepatica (Nematoda) on natality and survival to weaning in BALB/c mice. Aust J Zool 34:687–681CrossRefGoogle Scholar
  41. Skørping A, Read AF, Keymer AE (1991) Life history covariation in intestinal nematodes of mammals. Oikos 60:365–372CrossRefGoogle Scholar
  42. Sorci G, Morand S, Hugot J-P (1997) Host-parasite coevolution: Comparative evidence for covariation of life history traits in primates and oxyurid parasites. Proc R Soc Lond B 264:285–289CrossRefGoogle Scholar
  43. Tompkins DM, Begon M (1999) Parasites can regulate wildlife populations. Parasitol Today 15:311–313PubMedCrossRefGoogle Scholar
  44. Trouvé S, Morand S (1998) The evolution of parasites’ fecundity. Int J Parasitol 28:1817–1819PubMedCrossRefGoogle Scholar
  45. Trouvé S, Sasal P, Jourdane J, Renaud F, Morand S (1998) Revisited views on the evolution of life-history traits in parasitic and free-living platyhelminthes. Oecologia 115:370–378CrossRefGoogle Scholar
  46. White MJD (1973) Animal cytology and evolution. Cambridge Univ Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2006

Authors and Affiliations

  • Serge Morand
  • Salah Bouamer
  • Jean-Pierre Hugot

There are no affiliations available

Personalised recommendations