Advertisement

Towards understanding the impacts of environmental variation on Echinococcus multilocularis transmission

  • David R. J. Pleydell
  • Francis Raoul
  • Amélie Vaniscotte
  • Philip S. Craig
  • Patrick Giraudoux

Concluding remarks

A key element in disease emergence/re-emergence is ecosystem disruption as a result of anthropogenic effects which may be as rapid as in forestry and agricultural changes. There is however difficulty in developing suitable models to study ecology of infectious diseases, wherein spatial determinants that meaningfully characterize wildlife reservoir habitat, can be linked in turn to host ecology and to dynamics of pathogen/parasite transmission. Spatial variables in the form of landscape and socio-economic characteristics should be linked to parasite transmission dynamics using an integrated modeling approach that takes into account multi-level heterogeneity at habitat, host and parasite domains and deterministic transmission parameters. The diversity of small mammals host communities and landscape worldwide offer a number of systems that sustain transmission of E. multilocularis at various time-space scales. It is expected that further advances will come from methods combining quantification of host communities from field surveys, landscape via remote sensing and parasite transmission via population screenings conducted on definitive hosts (e.g. dogs in villages in China or foxes in Europe) and humans, in a spatially explicit context. The combination of multi-level field approaches with modern regression techniques coupled with traditional transmission models provide a unique opportunity of investigating how a diversity of small mammal communities and anthropogenic landscapes can regulate parasite transmission.

Keywords

Tibetan Plateau Small Mammal Intermediate Host Definitive Host Alveolar Echinococcosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ables ED (1965) An exceptional fox movement. J Mammal 46:132Google Scholar
  2. Allen SH, Sargeant AB (1993) Dispersal patterns of red foxes relative to population Density. J Wildl Manag 57:526–533Google Scholar
  3. Artois M (1989) Le Renard roux (Vulpes vulpes Linnaeus, 1758). In: Artois M, Delatre P (eds) Encyclopédie des carnivores de France. SFEPM, Nort/Erdre, pp 1–90Google Scholar
  4. Berke O (2001) Choropleth mapping of regional count data of Echinococcus multilocularis among red foxes in Lower Saxony, Germany. Prev Vet Med 52:119–131PubMedCrossRefGoogle Scholar
  5. Budke CM, Campos-Ponce M, Wang Q, Torgerson PR (2005a) A canine purgation study and risk factor analysis for echinococcosis in a high endemic region of the Tibetan plateau. Vet Parasitol 127:49–55Google Scholar
  6. Budke CM, Qiu J, Craig PS, Torgerson PR (2005b) Modelling the transmission of Echinococcus granulosus and Echinococcus multilocularis in dogs for a high endemic region of the Tibetan plateau. Int J Parasitol 35:163–70PubMedCrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach, 2nd edn. SpringerVerlag, New YorkGoogle Scholar
  8. Chen JC, Yao ZY, Liao CH (1982) Report on the damage caused by rodent pest in the grassland of South Gansu, China. Chinese J Zool 3:25Google Scholar
  9. Craig PS, Liu D, Macpherson CNL, Shi D, Reynolds D, Barnish G, Gottstein B, Wang Z (1992) A large focus of alveolar echinococcosis in central China. Lancet 340:826–831PubMedCrossRefGoogle Scholar
  10. Craig PS, Giraudoux P, Shi D, Bartholomot B, Barnish G, Delattre P, Quéré JP, Harraga S, Bao G, Wang Y, Lu F, Vuitton DA (2000) An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China. Acta Tropica 77:167–177PubMedCrossRefGoogle Scholar
  11. Danson FM, Graham AJ, Pleydell DRJ, Campos-Ponce M, Giraudoux P, Craig PS (2003) Multi-scale spatial analysis of human AE risk in China. Parasitology 127:133–141CrossRefGoogle Scholar
  12. Danson FM, Craig PS, Man W, Shi DZ, Giraudoux P (2004) Landscape dynamics and risk modelling of human alveolar echinococcosis. Photogram Eng Remote Sens 70:359–366Google Scholar
  13. Deplazes P, Hegglin D, Gloor S, Romig T (2004) Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends Parasitol 20:77–84PubMedCrossRefGoogle Scholar
  14. Eckert J, Schantz PM, Gasser RB, Torgerson PR, Bessonov AS, Movsessian SO, Thakur A, Grimm F, Nikogossian MA (2001) Geographic distribution and prevalence. In: Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS (eds) WHO/OIE manual on echinococcosis in humans and animals: A public health problem of global concern. World Organisation for Animal Health, Paris, pp 100–142Google Scholar
  15. Fan N, Zhou W, Wei W, Wang Q, Jiang Y (1999) Rodent pest management in the Qinghai-Tibet alpine meadow ecosystem. In: Singleton GR, Hinds LA, Leirs H, Zhang Z (eds) Ecologically-based management of rodent pests. Australian Center for International Agriculture Research, Canberra, pp 285–304Google Scholar
  16. Giraudoux P, Vuitton D, Bresson-Hadni S, Craig P, Bartholomot B, Barnish G, Laplante JJ, Zhong SD, Wang YH, Lenys D (1996) Mass screening and epidemiology of alveolar echinococcosis in France, Western Europe, and in Gansu, Central China: From epidemiology towards transmission ecology. In: Ito J, Sato N (eds) Alveolar echinococcosis: Strategy for eradication of alveolar echinococcosis of the liver. Fuji Shoin, Sapporo, pp 197–211Google Scholar
  17. Giraudoux P, Quéré JP, Delattre P, Bao GS, Wang XM, Shi DZ, Vuitton, DA, Craig PS (1998) Distribution of small mammals along a deforestation gradient in southern Gansu, central China. Acta Theriol 43:349–362Google Scholar
  18. Giraudoux P, Delattre P, Takahashi K, Raoul F, Quéré JP, Craig P, Vuitton D (2002) Transmission ecology of Echinococcus multilocularis in wildlife: What can be learned from comparative studies and multi-scale approaches? In: Cestode zoonoses: An emergent and global problem. NATO Sciences Series, IOS press, Amsterdam, pp 251–262Google Scholar
  19. Giraudoux P, Craig PS, Delattre P, Bartholomot B, Bao G, Barnish G, Harraga S, Quéré JP, Raoul F, Wang YH, Shi D, Vuitton D (2003) Interactions between landscape changes and host communities can regulate Echinococcus multilocularis transmission. Parasitology 127:121–131CrossRefGoogle Scholar
  20. Giraudoux P, Pleydell DRJ, Raoul F, Quéré JP, Wang Q, Yang YR, Vuitton DA, Qiu JM, Yang W, Craig PS (2006) Transmission ecology of Echinococcus multilocularis: What are the ranges of parasite stability among various host communities in China? Parasitol Int 55:S237–S246PubMedCrossRefGoogle Scholar
  21. Hansen F, Tackmann K, Jeltsch F, Wissel C, Thulke HH (2003) Controlling Echinococcus Multilocularis: Ecological implications of field trials. Prev Vet Med 60:91–105PubMedCrossRefGoogle Scholar
  22. Hansen F, Jeltsch F, Tackmann K, Staubach C, Thulke HH (2004) Processes leading to a spatial aggregation of Echinococcus multilocularis in its natural intermediate host Microtus arvalis. Int J Parasitol 34:37–44PubMedCrossRefGoogle Scholar
  23. Hofer S, Gloor S, Müller U, Mathis A, Hegglin D, Deplazes P (2000) High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 120:135–142PubMedCrossRefGoogle Scholar
  24. Hong LX, Lin YG (1987) Studies on the development and histopathology of alveolar cestode of Echinococcus multilocularis in human and animal hosts. Endemic Dis Bull 2:51–59Google Scholar
  25. Ishikawa H, Ohga Y, Doi R (2003) A model for the transmission of Echinococcus Multilocularis in Hokkaido, Japan. Parasitol Res 91:444–451PubMedCrossRefGoogle Scholar
  26. Kapel CMO, Torgerson PR, Thompson RCA, Deplaze P (2006) Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. Int J Parasitol 36:79–86PubMedCrossRefGoogle Scholar
  27. Kepron C, Schoen J, Novak M, Blackburn BJ (1999) NMR study of lipid changes in organs of jirds infected with Echinococcus multilocularis. Comp Biochem Physiol B 124:347–353CrossRefGoogle Scholar
  28. Li T, Qiu J, Yang W, Craig PS, Chen X, Xiao N, Ito A, Giraudoux P, Mumuti W, Yu W, Schantz PM (2005) Echinococcosis in Tibetan populations, Western Sichuan Province, China: A unique and unusually severe public health problem? Emerg Infect Dis 11:1866–1873Google Scholar
  29. Li WX, Zhang GC, Lin YG, Hong LX (1985) The occurrence of Echinococcus Multilocularis Leuckart, 1863, the natural animal hosts in China and its morphological Study. Acta Zool Sinica 31:365–371Google Scholar
  30. Lidicker WZ (1995) Landscape approaches in mammalian ecology and conservation. Univ Minnesota Press, MinneapolisGoogle Scholar
  31. Lidicker WZ (2000) A food web/landscape interaction model for microtine rodent density cycles. Oikos 91:435–445CrossRefGoogle Scholar
  32. Milner-Gulland EJ, Torgerson PR, Shaikenov B, Morgan E (2004) The tapeworm Echinococcus multilocularis in Kazakhstan: Transmission dynamics in a patchy environment, In: Akçakaya HR, Burgman MA, Kindvall O, Wood CC, Sjögren-Gulve P, Hatfield JS, McCarthy MA (eds) Species conservation and management. Case studies. Oxford Univ Press, Oxford, pp 179–89Google Scholar
  33. Morgan ER, Milner-Gulland EJ, Torgerson PR, Medley GF (2004) Ruminating on complexity: Macroparasites of wildlife and livestock. Trends Ecol Evol 19:181–188PubMedCrossRefGoogle Scholar
  34. Novak M, Modha A, Blackburn BJ (1993) Metabolic alterations in organs of Meriones unguiculatus infected with Echinococcus multilocularis. Comp Biochem Physiol B 105:517–521PubMedCrossRefGoogle Scholar
  35. Pawlowski ZS, Eckert J, Vuitton DA, Ammann RW, Kern P, Craig PS, Dar KF, De Rosa F, Filice C, Gottstein B, Grimm F, Macpherson CNL, Sato N, Todorov T, Uchino J, von Sinner W, Wen H (2001) Echinococcosis in humans: clinical aspects, diagnosis and treatment. In: Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS (eds) WHO/OIE manual on echinococcosis in humans and animals: A public health problem of global concern. World Organisation for Animal Health, Paris, pp 20–66Google Scholar
  36. Pesson B, Carbiener R (1989) Ecologie de l’échinococcose alvéolaire en Alsace: Le parasitisme du Renard roux (Vulpes vulpes L.). Bull d’ Écol 20:295–301Google Scholar
  37. Pleydell DRJ, Raoul F, Danson FM, Graham A, Craig PS, Tourneux F, Giraudoux P (2004) Modelling the spatial distribution of Echinococcus multilocularis infection in foxes. Acta Tropica 91:253–265PubMedCrossRefGoogle Scholar
  38. Qiu JM, Liu FJ, Schantz P, Ito A, Carol D, He JG (1999) Epidemiological survey of hydatidosis in Tibetan areas of Western Sichuan Province. Archivos Internacionales de la Hidatidosis 23:84Google Scholar
  39. Raoul F, Michelat D, Ordinaire M, Decote Y, Aubert M, Delattre P, Delazes P, Giraudoux P (2003) Echinococcus multilocularis: secondary poisoning of fox population during a vole outbreak reduces environmental contamination in a high endemicity area. Int J Parasitol 33:945–954PubMedCrossRefGoogle Scholar
  40. Rausch RL (1995) Life cycle patterns and geographic distribution of Echinococcus Species. In: Thompson RCA, Lymbery AJ (eds) Echinococcus and hydatid Disease, CABI, Wallingford, pp 51–134Google Scholar
  41. Roberts MG, Aubert MFA (1995) A model for the control of Echinocccus multilocularis in France. Vet Parasitol 56:67–74PubMedCrossRefGoogle Scholar
  42. Roberts MG, Lewis JR, Gemmel MA (1986) Population dynamics in echinococcus and cystercosis: Mathematical model of the life-cycle of Echinococcus granulosus. Parasitology 92:621–641PubMedGoogle Scholar
  43. Romig T (2002) Spread of Echinococcus multilocularis in Europe? In: Craig P, Pawloski (eds) Cestode zoonoses: Echinococcosis and cysticercosis. IOS Press, Amsterdam Berlin Oxford Tokyo Washington, pp 65–80Google Scholar
  44. Rosatte RC (2002) Long distance movement by a coyote, Canis latrans, and red fox, Vulpes vulpes, in Ontario: Implications for disease-spread. Can Field Nat 116:129–131Google Scholar
  45. Saitoh T, Takahashi K (1998) The role of vole populations in prevalence of the parasite (Echinococcus multilocularis) in foxes. Res Pop Ecol 40:97–105Google Scholar
  46. Smith AT, Foggin JM (1999) The plateau pika (Ochotona curzoniae) is keystone species for biodiversity on the Tibetan plateau. Anim Cons 2:235–240CrossRefGoogle Scholar
  47. Staubach C, Thulke HH, Tackmann K, Huges-Jones M, Conraths FJ (2001) Geographic information system-aided analysis of factors associated with the spatial distributions of foxes. Am J Trop Med Hyg 65:943–948PubMedGoogle Scholar
  48. Takumi K, Van Der Giessen J (2005) Transmission dynamics of Echinococcus Multilocularis: Its reproduction number, persistence in an area of low rodent prevalence, and effectiveness of control. Parasitology 131:133–140PubMedCrossRefGoogle Scholar
  49. Thompson RCA, McManus DP (2001) Aetiology: Parasite and life-cycles. In: Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS (eds) WHO/OIE manual on echinococcosis in humans and animals: A public health problem of global concern. World Organisation for Animal Health, Paris, pp 1–19Google Scholar
  50. Tolle F, Pleydell D, Combes B, Cliquet F, Piarroux M, Giraudoux P, Tourneux FP (2005) Identification of environmental risk factors for the presence of Echinococcus multilocularis. In: Tendorio JA, Juliao RP (eds) 14th European colloquium on theoretical and quantitative geography, September 9–13 2005, Tomar, Portugal (DVD-ROM)Google Scholar
  51. Torgerson PR (2003) The use of mathematical models to simulate control options for echinococcosis. Acta Tropica 85:211–221PubMedCrossRefGoogle Scholar
  52. Veit P, Bilger B, Schad V, Schäfer J, Frank W, Lucius R (1995) Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 110:79–86PubMedCrossRefGoogle Scholar
  53. Viel JF, Giraudoux P, Abrial V, Bresson-Hadni S (1999) Water vole (Arvicola terrestris scherman) density as risk factor for human alveolar echinococcosis. Am J Trop Med Hyg 61:559–565PubMedGoogle Scholar
  54. Vuitton D, Godot V, Zhang S, Harraga S, Penfornis A, Beurton I, Gottstein B, Kern P (2002) Host immunogenetics and role in epidemiology of larval cestodoses. In: Craig P, Pawloski (eds) Cestode zoonoses: Echinococcosis and cysticercosis. IOS Press, Amsterdam Berlin Oxford Tokyo Washington, pp 183–193Google Scholar
  55. Vuitton DA, Zhou H, Bresson-Hadni S, Qiang W, Raoul F, Giraudoux P (2003) Epidemiology of alveolar echinococcosis in humans: An update of the situation in Europe and China and new epidemiological trends. Parasitology 127:87–107CrossRefGoogle Scholar
  56. Wang SB, Yang GY (1983) Rodent fauna of Xinjiang. Xinjiang’s People Publ House, UrumqiGoogle Scholar
  57. Wang Q, Vuitton DA, Qiu JM, Giraudoux P, Xiao YF, Schantz PM, Raoul F, Li TY, Yang W, Craig PS (2004) Fenced pasture: A possible risk factor for human alveolar echinococcosis in Tibetan pastoralist communities of Sichuan, China. Acta Tropica 90:285–293PubMedCrossRefGoogle Scholar
  58. Wang Q, Qiu J, Yang W, Schantz PM, Raoul F, Craig PS, Giraudoux P, Vuitton DA (2006) Socioeconomic and behavior risk factors of human alveolar echinococcosis in Tibetan communities in Sichuan, People’s Republic of China. Am J Trop Med Hyg 74:856–862PubMedGoogle Scholar
  59. Wang W, Wu Y, Wu JG, Ding ZX (1989) Investigation of Echinococcus multilocularis in Tachang, Xinjiang — new record of wolf infected with E. Multilocularis. Endemic Dis Bull 4:8–10Google Scholar
  60. Watihan (1987) The discovering of Echinococcus multilocularis in red fox in Xinjiang. Xinjiang Animal Industry 2:36–38Google Scholar
  61. Weber JM, Aubry S (1993) Predation by foxes, Vulpes vulpes, on the fossorial form of the water vole, Arvicola terrestris scherman, in western Switzerland. J Zool Lond 229:553–559CrossRefGoogle Scholar
  62. Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modeling. Ecol Model 157:157–177CrossRefGoogle Scholar
  63. Xiao N, Qiu J, Nakao M, Li T, Yang W, Chen X, Schantz PM, Craig PS, Ito A (2005) Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China. Int J Parasitol 35:693–701PubMedCrossRefGoogle Scholar
  64. Yang YR, Ellis M, Sun T, Li Z, Liu XZ, Vuitton DA, Bartholomot B, Giraudoux P, Craig PS, Boufana B, Wang Y, Feng XH, Wen H, Ito A, McManus DP (2006) A unique family clustering of human echinococcosis cases in a Chinese community. Am J Trop Med Hyg 74:487–494PubMedGoogle Scholar
  65. Zhou HX, Wen H, Wang YH, Delattre P, Quere JP, Vuitton DA, Craig P, Giraudoux P (1998) Experimental susceptibility of Spermophilus erythrogenys to Echinococcus multilocularis. Ann Trop Med Parasitol 93:335–337Google Scholar
  66. Zhou HX, Chai SX, Craig PS, Delattre P, Raoul F, Quéré JP, Vuitton DA, Wen H, Giraudoux P (2000) Epidemiology of alveolar echinococcosis in Xinjiang Uygur Autonomous Region, China: A preliminary analysis. Ann Trop Med Parasitol 94:715–729PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2006

Authors and Affiliations

  • David R. J. Pleydell
  • Francis Raoul
  • Amélie Vaniscotte
  • Philip S. Craig
  • Patrick Giraudoux

There are no affiliations available

Personalised recommendations