Models for host-macroparasite interactions in micromammals

  • Roberto Rosà
  • Annapaola Rizzoli
  • Nicola Ferrari
  • Andrea Pugliese


Lyme Disease Host Density Wood Mouse Parasite Burden Tick Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Madi MA, Behnke JM, Lewis JW, Gilbert FS (1998) Descriptive epidemiology of Heligmosomoides polygyrus in Apodemus sylvaticus from three contrasting habitats in south-east England. J Helmintol 72:93–100CrossRefGoogle Scholar
  2. Adler FR, Kretzschmar M (1992) Aggregation and stability in parasite-host models. Parasitology 104:199–205PubMedGoogle Scholar
  3. Anderson RC (2000) Nematode parasites of vertebrates: Their development and transmission, 2nd edn. CABI, WallingfordGoogle Scholar
  4. Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–247CrossRefGoogle Scholar
  5. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426PubMedGoogle Scholar
  6. Anderson RM, May RM (1985) Age-related changes in the rate of transmission: Implications for the design of vaccinations programmes. J Hyg 94:365–436CrossRefGoogle Scholar
  7. Arneberg P, Skorping A, Read AF (1998) Parasite abundance, body size, life histories and the energetic equivalent rule. Amer Nat 151:497–513CrossRefGoogle Scholar
  8. Bailey NTJ (1975). The mathematical theory of infectious diseases and its applications. Griffin, LondonGoogle Scholar
  9. Begon M, Bowers RG (1995) Beyond host-pathogen dynamics. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 478–509Google Scholar
  10. Behnke JM, Keymer AE, Lewis JW (1991) Heligmosomoides polygyrus or Nematospiroides Dubius? Parasitol Today 7:177–179PubMedCrossRefGoogle Scholar
  11. Behnke JM, Lewis JW, Mohd Zain SN, Gilbert FS (1999) Helminth infections in Apodemus sylvaticus in southern England: Interactive effects of host age, sex and year on the prevalence and abundance of infections. J Helmintol 73:31–44Google Scholar
  12. Cattadori IM, Boag B, Björnstadt ON, Cornell SJ, Hudson PJ (2005) Peak shift and epidemiology in a seasonal host-nematode system. Proc R Soc Lond B 272:1163–1169CrossRefGoogle Scholar
  13. Chan MS, Mutapi F, Woolhouse MEJ, Isham VS (2000) Stochastic simulation and the detection of immunity to schistosome infections. Parasitology 120:161–169PubMedCrossRefGoogle Scholar
  14. Cornell S (2005) Modelling nematodes populations: 20 years of progress. Trends Parasitol 11:483–546Google Scholar
  15. Craine NG, Randolph SE, Nuttall PA (1995) Seasonal variation in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochaete, in a British woodland. Folia Parasitol 42:73–80PubMedGoogle Scholar
  16. Crofton HD (1971) A quantitative approach to parasitism. Parasitology 63:179–193Google Scholar
  17. Diekmann O, Kretzschmar M (1991) Patterns in the effects of infectious diseases on population growth. J Math Biol 29:539–570PubMedCrossRefGoogle Scholar
  18. Dobson AP, Hudson PJ (1992) Regulation and stability of a free-living hostparasite system: Trichostrongylus tenuis in red grouse. II. Population models. J Anim Ecol 61:487–498CrossRefGoogle Scholar
  19. Duerr HP, Dietz K, Eichner M (2003) On the interpretation of age-intensity profiles and dispersion patterns in parasitological surveys. Parasitology 126:87–101PubMedCrossRefGoogle Scholar
  20. Eisen L, Lane RS (2002) Vectors of Borrelia burgdorferi sensu lato. In: Gray O, Kahl RS, Lane RS, Stanek G (eds) Lyme borreliosis: Biology, epidemiology and control, CABI, New York, pp 91–115Google Scholar
  21. Enriquez FJ, Scarpino V, Cypress RH, Wassom DL (1988) In vivo and in vitro egg production by Nematospiroides dubius during primary and challenge infections in resistant and susceptible strains of mice. J Parasitol 74:262–266PubMedCrossRefGoogle Scholar
  22. Fernàndez S, Šarkunas M, Roepstorff A (2001) Survival of infective Ostertagia Ostertagi larvae on pasture plots under different simulated grazing conditions. Vet Parasitol 96:291–299PubMedCrossRefGoogle Scholar
  23. Ferrari N, Cattadori IM, Nespereira J, Rizzoli A., Hudson PJ (2004) The role of host sex in parasite dynamics: Field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7:88–94CrossRefGoogle Scholar
  24. Flowerdew J (1984) Wood mice. Anthony Nelson, Oswestry, ShropshireGoogle Scholar
  25. Gaba S, Ginot V, Cabaret J (2005) Modelling macroparasite aggregation using a nematode-sheep system: The Weibull distribution as an alternative to the negative binomial distribution? Parasitology 131:393–401PubMedCrossRefGoogle Scholar
  26. Gern L, Rais O (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33:189–192PubMedGoogle Scholar
  27. Ghosh, M, Pugliese A (2004) Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach. Bull Math Biol 66:1659–168PubMedCrossRefGoogle Scholar
  28. Gilbert L, Norman R, Laurenson KM, Reid HW, Hudson PJ (2001) Disease persistence and apparent competition in a three-host community: An empirical and analytical study of large-scale, wild populations. J Anim Ecol 70:1053–1061CrossRefGoogle Scholar
  29. Gregory RD (1991) Parasite epidemiology and host population growth: Heligmosomoides Polygyrus (Nematoda) in enclosed wood mouse populations. J Anim Ecol 60:805–821CrossRefGoogle Scholar
  30. Gregory, RD (1992) On the interpretation of host-parasite ecology: Heligmosomoides Polygyrus (Nematoda) in wild wood mouse (Apodemus sylvaticus) Populations. J Zool Lond 226:109–121Google Scholar
  31. Gregory RD, Keymer AE, Clarke JR (1990) Genetics, sex, and exposure: The ecology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J Anim Ecol 59:363–378CrossRefGoogle Scholar
  32. Gregory RD, Montgomery SSJ, Montgomery WI (1992) Population biology of Heligmosomoides polygyrus in the wood mouse. J Anim Ecol 61:749–757CrossRefGoogle Scholar
  33. Grenfell BT (1992) Parasitism and the dynamics of ungulate grazing systems. Amer Nat 139:907–929CrossRefGoogle Scholar
  34. Grenfell BT, Dietz K, Roberts MG (1995) Modelling the immuno-epidemiology of macroparasites in wildlife host populations In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 362–383Google Scholar
  35. Herbert J, Isham V (2000) Stochastic host-parasite interaction models. J Math Biol 40:343–371PubMedCrossRefGoogle Scholar
  36. Hess G (1996) Disease in metapopulation models: Implications for conservation. Ecology 77:1617–1632CrossRefGoogle Scholar
  37. Hudson PJ, Dobson AP (1995) Macroparasites: Observed patterns. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 144–176Google Scholar
  38. Hudson PJ, Norman R, Laurenson MK, Newborn D, Gaunt M, Jones L, Reid H, Gould E, Bowers R, Dobson AP (1995) Persistence and transmission of tickborne viruses: Ixodes ricinus and louping-ill virus in red grouse populations. Parasitology 111:S49–S58PubMedGoogle Scholar
  39. Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258PubMedCrossRefGoogle Scholar
  40. Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) (2001) The ecology of wildlife diseases. Oxford Univ Press, OxfordGoogle Scholar
  41. Hughes VL, Randolph SE (2001) Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: A force for aggregated distributions of parasites. J Parasitol 87:49–54PubMedGoogle Scholar
  42. Isham V (1995) Stochastic models of host-macroparasite interaction. Ann Appl Prob 5:720–740Google Scholar
  43. Jones LD, Davies CR, Steele GM, Nuttall PA (1987) A novel mode of arbovirus transmission involving a nonviraemic host. Science 237:775–777PubMedCrossRefGoogle Scholar
  44. Jones LD, Gaunt M, Hails RS, Laurenson K, Hudson PJ, Reid H, Henbest P, Gould EA (1997) Transmission of louping-ill virus between infected and uninfected ticks co-feeding on muntain hares (Lepus timidus). Med Vet Entomol 11:172–176PubMedGoogle Scholar
  45. Kaitala V, Ranta E Lindstroem J (1996) Cyclic population dynamics and random Perturbations. J Anim Ecol 65:249–251CrossRefGoogle Scholar
  46. Keeling MJ (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc Lond B 266:859–867CrossRefGoogle Scholar
  47. Keymer AE (1985) Experimental epidemiology: Nematospiroides dubius and laboratory mouse. In: Rollison D, Anderson RM (eds) Ecology and genetics of host-parasite interactions. Acad Press, London, pp 55–75Google Scholar
  48. Keymer AE, Hiorns RW (1986) Heligmosomoides polygyrus (Nematoda): The dynamics of primary and repeated infection in outbred mice. Proc R Soc Lon B 229:47–67CrossRefGoogle Scholar
  49. Kitron U, Mannelli A (1994) Modeling the ecological dynamics of tick-borne Zoonoses. In: Mather TN, Sonenshine DE (eds) Ecological dynamics of tickborne Zoonoses. Oxford Univ Press, Oxford, pp 198–239Google Scholar
  50. Kostizin VA (1934) Symbiose, parasitisme et èvolution (ètude mathèmatique). Hermann, Paris. Translated in: Scudo F, Ziegler J (eds) (1978) The golden age of theoretical ecology. Lecture notes in biomathematics, vol 52. SpringerVerlag, Berlin, pp 369–408Google Scholar
  51. Labuda M, Randolph SE (1999) Survival strategy of tick-borne encephalitis virus: Cellular basis and environmental determinants. Zentralbl Bakteriol 289:513–524PubMedGoogle Scholar
  52. Labuda M, Jones LD, Williams T, Nuttal P (1993) Enhancement of tick borne encephalitis virus transmission by tick salivary gland extracts. Med Vet Entomol 7:193–196PubMedGoogle Scholar
  53. Labuda M, Kozuch O, Zuffova E, Eleckova E, Hails RS, Nuttal PA (1997) Tickborne encephalitis virus transmission though ticks co-feeding on specific immune natural rodent hosts. Virology 235:138–143PubMedCrossRefGoogle Scholar
  54. Lewis JW (1987) Helminth parasites of British rodents and insectivores. Mammal Rev 17:81–93Google Scholar
  55. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100:567–571PubMedCrossRefGoogle Scholar
  56. McCallum H, Dobson AP (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol Evol 10:190–194CrossRefGoogle Scholar
  57. McCurdy DG, Shutler D, Mullie A, Forbes MR (1998) Sex-biased parasitism of avian host: Relations to blood parasite taxon and mating system. Oikos 82:303–312CrossRefGoogle Scholar
  58. Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018PubMedCrossRefGoogle Scholar
  59. Mount GA, Haile DG (1987) Computer management of area-wide management strategies for the lone star tick, Ambllyomma americanum (Acari: Ixodidae). J Med Entomol 24:523–531PubMedGoogle Scholar
  60. Mount GA, Haile DG (1989) Computer simulation of population dynamics of the America dog tick (Acari: Ixodidae). J Med Entomol 26:60–76PubMedGoogle Scholar
  61. Norman R, Bowers RG, Begon M, Hudson PJ (1999) Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition. J Theor Biol 200:111–118PubMedCrossRefGoogle Scholar
  62. Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: The case of Lyme Disease. Cons Biol 14:722–728CrossRefGoogle Scholar
  63. Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli A, Hudson PJ (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33:909–917PubMedCrossRefGoogle Scholar
  64. Poulin R (1996) Sexual inequalities in helminth infections: A cost of being male? Amer Nat 147:287–295CrossRefGoogle Scholar
  65. Pugliese A (2002) Virulence evolution in macro-parasites. In: Castillo-Chavez C, Blower S, Kirschner D, Van Den Driessche P, Yakubu A (eds) Mathematical approaches for emerging and reemerging infectious diseases: Models, methods and theory, part 2. IMA Series vol. 126, SpringerVerlag, New York, pp 193–213Google Scholar
  66. Pugliese A, Tonetto L (2004) Thresholds for macroparasite infections. J Math Biol 49:83–110PubMedCrossRefGoogle Scholar
  67. Quinnell RJ (1992) The population dynamics of Heligmosomoides polygyrus in an enclosure population of wood mice. J Anim Ecol 61:669–679CrossRefGoogle Scholar
  68. Quinnell RJ, Grafen A, Woolhouse MEJ (1995) Changes in parasite aggregation with age: A discrete infection model. Parasitology 111:635–644Google Scholar
  69. Randolph SE (1994) Density-dependent acquired resistance in natural and unnatural hosts. Parasitology 79:141–156Google Scholar
  70. Randolph SE (2001) The shifting landscape of tick-borne zoonoses: Tick-borne encephalitis and Lyme borreliosis in Europe. Phil Trans R Soc Lond B 356:1045–1056Google Scholar
  71. Randolph SE, Rogers DJ (1997) A generic population model for the African tick Rhipicephalus appendiculatus. Parasitology 115:265–279PubMedCrossRefGoogle Scholar
  72. Randolph SE, Rogers DJ (2000) Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc Lond B 267:1741–1744CrossRefGoogle Scholar
  73. Randolph SE, Gern L, Nuttal PA (1996) Co-feeding ticks: Epidemiological significance for tick-borne pathogens transmission. Parasitol Today 12:472–479PubMedCrossRefGoogle Scholar
  74. Randolph SE, Miklisova D, Lysy J, Rogers DJ, Labuda M (1999) Incidence from coincidence: Patterns of tick infestations in rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186PubMedCrossRefGoogle Scholar
  75. Randolph SE, Green RM, Peacey MF, Rogers DJ (2000) Seasonal synchrony: The key to the tick-borne pathogen transmission. Parasitology 121:15–23PubMedCrossRefGoogle Scholar
  76. Randolph SE, Chemini C, Furlanello C, Genchi C, Hails RA, Hudson PJ, Jones LD, Medley G, Norman R, Rizzoli AP, Smith G, Woolhouse MEJ (2001) The ecology of tick-borne infections in wildlife reservoirs. In: Hudson PJ, Rizzoli A, Grenfell BT, Hesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford Univ Press, Oxford, pp 119–138Google Scholar
  77. Roberts MG, Heesterbeek JAP (1995) The dynamics of nematode infections of farmed ruminants. Parasitology 110:493–502PubMedGoogle Scholar
  78. Roberts MG, Smith G, Grenfell BT (1995) Mathematical models for macroparasites of wildlife. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 177–208Google Scholar
  79. Rosà R, Pugliese A (2002) Aggregation, stability and oscillations in different models for host-macroparasite interactions. Theor Pop Biol 61:319–334CrossRefGoogle Scholar
  80. Rosà R, Rizzoli A, Pugliese A, Genchi C (2000) Managing chamois ( Rupicapra Rupicapra) populations: A model with macroparasites infection and host dynamics. Hystrix 11:103–114Google Scholar
  81. Rosà R, Pugliese A, Villani A, Rizzoli A (2003a) Individual-based vs. deterministic models for macroparasites: Host cycles and extinction. Theor Pop Biol 63:295–307CrossRefGoogle Scholar
  82. Rosà R, Pugliese A, Norman R, Hudson PJ (2003b) Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. J Theor Biol 224:359–376PubMedCrossRefGoogle Scholar
  83. Schalk G, Forbes MR (1997) Male biases in parasitism of mammals: Effects of study type, host age and parasite taxon. Oikos 78:67–74CrossRefGoogle Scholar
  84. Scott ME (1987) Regulation of mouse colony abundance by Heligmosomoides polygyrus. Parasitology 95:111–124PubMedGoogle Scholar
  85. Scott ME (1990) An experimental and theoretical study of the dynamics of a mouse-nematode (Heligmosomoides polygyrus) interactions. Parasitology 101:75–92PubMedCrossRefGoogle Scholar
  86. Skorping A, Jensen KH (2004) Disease dynamics: All caused by males? Trends Ecol Evol 19:219–220PubMedCrossRefGoogle Scholar
  87. Slater AF, Keymer AE (1988) Epidemiology of Heligmosomoides polygyrus in mice: experiments on natural transmission. Parasitology 93:177–187Google Scholar
  88. Van Buskirk J, Ostfeld RS (1995) Controlling Lyme disease by modifying the density and species composition of tick hosts. Ecol Appl 5:1133–1140Google Scholar
  89. White KAJ, Grenfell BT, Hendry RJ, Lejeune O, Murray JD (1996) Effect of seasonal host reproduction on host-macroparasite dynamics. Math Biosci 137:79–99PubMedCrossRefGoogle Scholar
  90. Wikel SK (1982) Immune response to arthropods and their hosts. Ann Rev Entomol 27:21–48CrossRefGoogle Scholar
  91. Wilson K, Bjørnstad ON, Dobson AP, Merler S, Poglayen G, Randolph SE, Read AF, Skorping A (2001) Heterogeneities in macroparasite infections: Patterns and processes. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford Univ Press, Oxford, pp 6–44Google Scholar
  92. Woolhouse MEJ (1992) A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunol 14:563–578PubMedGoogle Scholar
  93. Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnel RJ, Watts CH, Chandiwana SK, Anderson RM (1997) Heterogeneities in the transmission of infectious agents; implications for the design of control programs. Proc Natl Acad Sci USA 94:338–342PubMedCrossRefGoogle Scholar
  94. Zeman P, Benes C (2004) A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: Possible impact of global warming? Int J Med Microbiol 37:48–54Google Scholar

Copyright information

© Springer-Verlag Tokyo 2006

Authors and Affiliations

  • Roberto Rosà
  • Annapaola Rizzoli
  • Nicola Ferrari
  • Andrea Pugliese

There are no affiliations available

Personalised recommendations