Fleas: Permanent satellites of small mammals

  • Sergei G. Medvedev
  • Boris R. Krasnov

Concluding remarks

Fleas are strongly specialized to periodic ectoparasitism on small mammals and demonstrate a variety of life histories and associations with their hosts. This makes fleas a very convenient model for testing hypotheses related to evolutionary ecology of parasitism. Some of these studies will be reviewed in further chapters of this book.


Sexual Size Dimorphism Flea Species Dominican Amber Adult Flea Fore Coxa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abouheif E, Fairbairn DJ (1997) A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch’s rule. Amer Nat 149:540–562CrossRefGoogle Scholar
  2. Bacot AW (1914) A study of bionomics of the common rat fleas and other species associated with human habitations, with special reference to the influence of temperature and humidity at various periods of the life history of the insect. J Hyg 13:447–654Google Scholar
  3. Bacot AW, Martin CJ (1924) The respective influences of temperature and moisture upon the survival of the rat flea (Xenopsylla cheopis) away from its host. J Hyg 23:98–105Google Scholar
  4. Bell PJ, Burton HR, van Franeker JA (1988) Aspects of the biology of Glaciopsyllus Antarcticus (Siphonaptera: Ceratophyllidae) during the breeding season of a host (Fulmarus glacialoides). Polar Biol 8:403–410CrossRefGoogle Scholar
  5. Bennet-Clark HC, Lucey EC (1967) The jump of the flea: A study of the energetics and a model of the mechanism. J Exp Biol 47:59–67PubMedGoogle Scholar
  6. Colwell RK (2000) Rensch’s rule crosses the line: Convergent allometry of sexual size dimorphism in hummingbirds and flower mites. Amer Nat 156:495–510CrossRefGoogle Scholar
  7. Dampf A (1911) Palaeopsylla klebsiana n. sp., eine fossiler Floh aus dem baltischen Bernstein. Schrift. Physik-Ökonom Gesel Königsberg 51:248–259Google Scholar
  8. Darskaya NF (1970) Ecological comparisons of some fleas of the USSR fauna (in Russian). Zool Zh 49:729–745Google Scholar
  9. Edney EB (1945) Laboratory studies on the bionomics of the rat fleas, Xenopsylla Brasiliensis Baker and X. Cheopis Roths. I. Certain effects of light, temperature and humidity on the rate of development and on adult longevity. Bull Entomol Res 35:399–416Google Scholar
  10. Edney EB (1947a) Laboratory studies on the bionomics of the rat fleas, Xenopsylla Brasiliensis Baker and X. Cheopis Roths. II. Water relations during the cocoon period. Bull Entomol Res 38:263–280PubMedGoogle Scholar
  11. Edney EB (1947b) Laboratory studies on the bionomics of the rat fleas, Xenopsylla Brasiliensis Baker and X. Cheopis Roths. III. Further factors affecting adult longevity. Bull Entomol Res 38:389–404CrossRefPubMedGoogle Scholar
  12. Fairbairn DJ (1997) Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Ann Rev Ecol Syst 28:659–687CrossRefGoogle Scholar
  13. Hastriter MW, Whiting MF (2003) Siphonaptera (fleas). In: Resh VH, Carde R (eds) Encyclopedia of insects. Acad Press/Elsevier, Orlando, pp 1039–1045Google Scholar
  14. Hinton HE (1958) The phylogeny of the Panorpoid orders. Ann Rev Entomol 3:181–206CrossRefGoogle Scholar
  15. Ioff IG (1941) Ecology of fleas in relevance to their medical importance (in Russian). Ordzhonikidze Regional Publisher, PyatygorskGoogle Scholar
  16. Krasnov BR, Shenbrot GI, Medvedev SG, Vatschenok VS, Khokhlova IS (1997) Host-habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114:159–173PubMedCrossRefGoogle Scholar
  17. Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001a) Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Med Vet Entomol 15:249–258PubMedCrossRefGoogle Scholar
  18. Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001b) The effect of temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 38:629–637PubMedCrossRefGoogle Scholar
  19. Krasnov BR, Khokhlova IS, Oguzoglu I, Burdelova NV (2002a) Host discrimination by two desert fleas using an odour cue. Anim Behav 64:33–40CrossRefGoogle Scholar
  20. Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2002b) Time to survival under starvation in two flea species (Siphonaptera: Pulicidae) at different air temperatures and relative humidities. J Vector Ecol 27:70–81PubMedGoogle Scholar
  21. Krasnov BR, Burdelov SA, Khokhlova IS, Burdelova NV (2003) Sexual size dimorphism, morphological traits and jump performance in seven species of desert fleas (Siphonaptera). J Zool Lond 261:181–189Google Scholar
  22. Krasnov BR, Shenbrot GI, Khokhlova IS (2004a) Sampling fleas: The reliability of host infestation data. Med Vet Entomol 18:232–240PubMedCrossRefGoogle Scholar
  23. Krasnov BR, Khokhlova IS, Burdelov SA, Fielden LJ (2004b) Metabolic rate and jumping performance in seven species of desert fleas. J Insect Physiol 50:149–156PubMedCrossRefGoogle Scholar
  24. Krasnov BR, Khokhlova IS, Burdelova NV, Mirzoyan NS, Degen AA (2004c) Fitness consequences of density-dependent host selection in ectoparasites: Testing reproductive patterns predicted by isodar theory in fleas parasitizing Rodents. J Anim Ecol 73:815–820CrossRefGoogle Scholar
  25. Kristensen NP (1981) Phylogeny of insect orders. Ann Rev Entomol 26:135 157CrossRefGoogle Scholar
  26. Lawrence W, Foil LD (2002) The effect of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae). J Vector Ecol 27:39–43PubMedGoogle Scholar
  27. Lewis RE, Grimaldi D (1997) A pulicid flea in Miocene amber from the Dominican Republic (Insecta: Siphonaptera: Pulicidae). Amer Mus Nov 3205:1–9Google Scholar
  28. Lindsay LR, Galloway TD (1998) Reproductive status of four species of fleas (Insecta: Siphonaptera) on Richardson’s ground squirrel (Rodentia: Sciuridae) in Manitoba, Canada. J Med Entomol 35:423–430PubMedGoogle Scholar
  29. Margalit Y, Shulov AS (1972) Effect of temperature on development of prepupa and pupa of the rat flea, Xenopsylla cheopis Rothschild. J Med Entomol 9:117–125PubMedGoogle Scholar
  30. Marshall AG (1981) The ecology of ectoparasitic insects. Acad Press, LondonGoogle Scholar
  31. Medvedev SG (1996) Geographical distribution of families of fleas (Siphonaptera). Entomol Rev 76:978–992Google Scholar
  32. Medvedev SG (1997a) Host-parasite relations in fleas (Siphonaptera). I. Entomol Rev 77:318–337Google Scholar
  33. Medvedev SG (1997b) Host-parasite relations in fleas (Siphonaptera). II. Entomol Rev 77:511–521Google Scholar
  34. Medvedev SG (1998) Fauna and host-parasite relations of fleas (Siphonaptera) in the Palaearctic. Entomol Rev 78:292–308Google Scholar
  35. Medvedev SG (2000a) Fauna and host-parasite associations of fleas (Siphonaptera) in different zoogeographical regions of the World. I. Entomol Rev 80:409–435Google Scholar
  36. Medvedev SG (2000b) Fauna and host-parasite associations of fleas (Siphonaptera) in different zoogeographical regions of the World. II. Entomol Rev 80:640–655Google Scholar
  37. Medvedev SG (2001a) On the structure of cephalic ctenidia in fleas (Siphonaptera). Entomol Rev 81:1117–1135Google Scholar
  38. Medvedev SG (2001b) Peculiarities of thoracis and abdominal combs of fleas (Siphonaptera) (in Russian). Parazitologiya 35:291–306Google Scholar
  39. Medvedev SG (2002) Specific features of the distribution and host associations of fleas (Siphonaptera). Entomol Rev 82:1165–1177Google Scholar
  40. Medvedev SG (2003a) Morphological adaptations of fleas (Siphonaptera) to parasitism. I. Entomol Rev 83:1059–1080Google Scholar
  41. Medvedev SG (2003b) Morphological adaptations of fleas (Siphonaptera) to parasitism. II. Entomol Rev 83:1114–1129Google Scholar
  42. Medvedev SG (2005) An attempted system analysis of the evolution of the order of fleas (Siphonaptera) (in Russian). Lectures in Memoriam N. A. Kholodkovsky, No.57. Russian Entomol Soc and Zool Inst Russian Acad Sci, St PetersburgGoogle Scholar
  43. Medvedev SG, Lobanov AL (1999) Information-analytical system of the World fauna of fleas (Siphonaptera): Results and prospects. Entomol Rev 79:654–665Google Scholar
  44. Medvedev SG, Lobanov AL, Lyanguzov IA (2005) World database of fleas (Nov 2004 version). In: Bisby FA, Ruggiero MA, Wilson KL, Cachuela-Palacio M, Kimani SW, Roskov YR, Soulier-Perkins A, van Hertum J (eds) Species 2000 and ITIS catalogue of life: 2005 Annual checklist. Species 2000, Reading (CD-ROM)Google Scholar
  45. Metzger ME, Rust MK (1997) Effect of temperature on cat flea (Siphonaptera: Pulicidae) development and overwintering. J Med Entomol 34:173–178PubMedGoogle Scholar
  46. Nelzina EN, Danilova GM, Tchernova GI (1963) Abundance and spatial distribution of micropopulations of hematophagous arthropods in microhabitats of Citellus pygmaeus (in Russian). Meditzinskaya Parazitologiya i Parazitarnye Bolezni [Medical Parasitology and Parasitic Diseases] 32:45–54Google Scholar
  47. Novokrestchenova NS (1960) Data on the ecology of fleas of Citellus pygmaeus in relation to their epizootological importance (in Russian). Trudy Protivochumnogo Instituta “Microb” [Proceedings of the Anti-Plague “Microb” Institute] 4:444–456Google Scholar
  48. Peus F (1968) Über die beiden Bernstein-Flöhe (Insecta, Siphonaptera). Palaeontol Z 42:62–72Google Scholar
  49. Ponomarenko AG (1976) The new insect from the Cretaceous of Transbaicalia was a probable parasite of pterosaurs (in Russian). Paleontol Zh 3:102–106Google Scholar
  50. Rasnitsyn AP (1992) Strashila incredibilis, a new enigmatic mecopteroid insect with possible siphonapteran affinities from upper Jurassic of Siberia. Psyche 99:323–333CrossRefGoogle Scholar
  51. Reiss MJ (1986) Sexual dimorphism in body size: Are larger species more dimorphic? J Theor Biol 121:163–72CrossRefGoogle Scholar
  52. Rensch B (1960) Evolution above the species level. Columbia Univ Press, New YorkGoogle Scholar
  53. Riek EF (1970) Lower Cretaceous fleas. Nature 227:746–747PubMedCrossRefGoogle Scholar
  54. Rothschild M, Ford R (1966) Hormones of the vertebrate host controlling ovarian regression and copulation of the rabbit flea. Nature 211:261–266PubMedCrossRefGoogle Scholar
  55. Rothschild M, Ford R (1969) Does a pheromone-like factor from the nestling rabbit stimulate impregnation and maturation in the rabbit flea? Nature 221:1169–1170PubMedCrossRefGoogle Scholar
  56. Rothschild M, Ford R (1972) Breeding cycle of the flea Cediopsylla simplex is controlled by breeding cycle of host. Science 178:625–626PubMedCrossRefGoogle Scholar
  57. Rothschild M, Ford R (1973) Factors influencing the breeding of the rabbit flea (Spilopsyllus cuniculi): A spring-time accelerator and a kairomone in nestling rabbit urine (with notes on Cediopsylla simplex, another “hormone bound” species). J Zool Lond 170:87–137CrossRefGoogle Scholar
  58. Rothschild M, Schlein J (1975) The jumping mechanism of Xenospylla cheopis. I. Exoskeletal structures and musculature. Phil Trans R Soc Lond B 271:457–489Google Scholar
  59. Rothschild M, Schlein J, Parker K, Neville C, Sternberg S (1973) The flying leap of the flea. Sci Amer 229:92–100CrossRefGoogle Scholar
  60. Rothschild M, Schlein J, Parker K, Neville C, Sternberg S (1975) The jumping mechanism of Xenospylla cheopis. III. Execution of the jump and activity. Phil Trans R Soc Lond B 271:499–515Google Scholar
  61. Seal SC, Bhattacharji LM (1961) Epidemiological studies of plague in Calcutta, Part 1. Bionomics of two species of rat fleas and distribution, densities and resistance of rodents in relation to the epidemiology of plague in Calcutta. Indian J Med Res 49:974–1007Google Scholar
  62. Silverman J, Rust MK (1983) Some abiotic factors affecting the survival of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Environ Entomol 12:490–495Google Scholar
  63. Silverman J, Rust MK (1985) Extended longevity of the pre-emerged adult of the cat flea (Siphonaptera: Pulicidae) and factors stimulating emergence from the pupal cocoon. Ann Entomol Soc Am 78:763–768Google Scholar
  64. Silverman J, Rust MK, Reierson DA (1981) Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). J Med Entomol 18:78–83PubMedGoogle Scholar
  65. Smit FGAM (1972) On some adaptive structures in Siphonaptera. Folia Parasitol 19:5–17PubMedGoogle Scholar
  66. Smit FGAM (1978) Fossil “fleas”. Flea News 14:1–2Google Scholar
  67. Snodgrass RE (1946) The skeletal anatomy of fleas (Siphonaptera). Smithsonian Misc Coll 10:1–89Google Scholar
  68. Sobey WR, Menzies W, Conolly D (1974) Myxomatosis: Some observations on breeding the European rabbit flea Spilopsyllus cuniculi (Dale) in an animal house. J Hyg 71:453–465Google Scholar
  69. Tillyard RJ (1935) The evolution of the scorpion-flies and their derivatives (order Mecoptera). Ann Entomol Soc Am 28:1–45Google Scholar
  70. Traub R (1980) Some adaptive modifications in fleas. In: Traub R, Starcke H (eds) Fleas. Proceedings of the international conference on fleas. Ashton Wold/Peterborough/UK/21–25 June 1977. Balkema, Rotterdam, pp 33–68Google Scholar
  71. Traub R (1985) Coevolution of fleas and mammals. In: Kim KC (ed) Coevolution of parasitic arthropods and mammals. John Wiley, New York, pp 295–437Google Scholar
  72. Tripet F, Christe P, Møller AP (2002) The importance of host spatial distribution for parasite specialization and speciaton: A comparative study of bird fleas (Siphonaptera: Ceratophyllidae). J Anim Ecol 71:735–748CrossRefGoogle Scholar
  73. Uvarov BP (1931) Insects and climate. Trans R Entomol Soc Lond 79:1–247Google Scholar
  74. Vatschenok VS (1988) Fleas — vectors of pathogens causing diseases in humans and animals (in Russian). Nauka, LeningradGoogle Scholar
  75. Whiting MF (2002a) Phylogeny of the holometabolous insect orders: Molecular Evidence. Zool Scripta 31:3–15CrossRefGoogle Scholar
  76. Whiting MF (2002b) Mecoptera is paraphyletic: Multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool Scripta 31:93–104CrossRefGoogle Scholar
  77. Zhovtyi IF (1963) Some disputable questions of ecology of rodent fleas in relation to their medical importance (in Russian). Doklady Irkutskogo Protivotchumnogo Institute [Archives of the Irkutsk Anti-Plague Institute of Siberia and Far East] 6:96–104Google Scholar

Copyright information

© Springer-Verlag Tokyo 2006

Authors and Affiliations

  • Sergei G. Medvedev
  • Boris R. Krasnov

There are no affiliations available

Personalised recommendations