Skip to main content

Fleas: Permanent satellites of small mammals

  • Chapter
Micromammals and Macroparasites

Concluding remarks

Fleas are strongly specialized to periodic ectoparasitism on small mammals and demonstrate a variety of life histories and associations with their hosts. This makes fleas a very convenient model for testing hypotheses related to evolutionary ecology of parasitism. Some of these studies will be reviewed in further chapters of this book.

We thank Michael Hastriter for the helpful comments on the earlier version of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abouheif E, Fairbairn DJ (1997) A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch’s rule. Amer Nat 149:540–562

    Article  Google Scholar 

  • Bacot AW (1914) A study of bionomics of the common rat fleas and other species associated with human habitations, with special reference to the influence of temperature and humidity at various periods of the life history of the insect. J Hyg 13:447–654

    Google Scholar 

  • Bacot AW, Martin CJ (1924) The respective influences of temperature and moisture upon the survival of the rat flea (Xenopsylla cheopis) away from its host. J Hyg 23:98–105

    Google Scholar 

  • Bell PJ, Burton HR, van Franeker JA (1988) Aspects of the biology of Glaciopsyllus Antarcticus (Siphonaptera: Ceratophyllidae) during the breeding season of a host (Fulmarus glacialoides). Polar Biol 8:403–410

    Article  Google Scholar 

  • Bennet-Clark HC, Lucey EC (1967) The jump of the flea: A study of the energetics and a model of the mechanism. J Exp Biol 47:59–67

    PubMed  CAS  Google Scholar 

  • Colwell RK (2000) Rensch’s rule crosses the line: Convergent allometry of sexual size dimorphism in hummingbirds and flower mites. Amer Nat 156:495–510

    Article  Google Scholar 

  • Dampf A (1911) Palaeopsylla klebsiana n. sp., eine fossiler Floh aus dem baltischen Bernstein. Schrift. Physik-Ökonom Gesel Königsberg 51:248–259

    Google Scholar 

  • Darskaya NF (1970) Ecological comparisons of some fleas of the USSR fauna (in Russian). Zool Zh 49:729–745

    Google Scholar 

  • Edney EB (1945) Laboratory studies on the bionomics of the rat fleas, Xenopsylla Brasiliensis Baker and X. Cheopis Roths. I. Certain effects of light, temperature and humidity on the rate of development and on adult longevity. Bull Entomol Res 35:399–416

    Google Scholar 

  • Edney EB (1947a) Laboratory studies on the bionomics of the rat fleas, Xenopsylla Brasiliensis Baker and X. Cheopis Roths. II. Water relations during the cocoon period. Bull Entomol Res 38:263–280

    CAS  PubMed  Google Scholar 

  • Edney EB (1947b) Laboratory studies on the bionomics of the rat fleas, Xenopsylla Brasiliensis Baker and X. Cheopis Roths. III. Further factors affecting adult longevity. Bull Entomol Res 38:389–404

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn DJ (1997) Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Ann Rev Ecol Syst 28:659–687

    Article  Google Scholar 

  • Hastriter MW, Whiting MF (2003) Siphonaptera (fleas). In: Resh VH, Carde R (eds) Encyclopedia of insects. Acad Press/Elsevier, Orlando, pp 1039–1045

    Google Scholar 

  • Hinton HE (1958) The phylogeny of the Panorpoid orders. Ann Rev Entomol 3:181–206

    Article  Google Scholar 

  • Ioff IG (1941) Ecology of fleas in relevance to their medical importance (in Russian). Ordzhonikidze Regional Publisher, Pyatygorsk

    Google Scholar 

  • Krasnov BR, Shenbrot GI, Medvedev SG, Vatschenok VS, Khokhlova IS (1997) Host-habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114:159–173

    Article  PubMed  Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001a) Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Med Vet Entomol 15:249–258

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001b) The effect of temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 38:629–637

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Khokhlova IS, Oguzoglu I, Burdelova NV (2002a) Host discrimination by two desert fleas using an odour cue. Anim Behav 64:33–40

    Article  Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2002b) Time to survival under starvation in two flea species (Siphonaptera: Pulicidae) at different air temperatures and relative humidities. J Vector Ecol 27:70–81

    PubMed  CAS  Google Scholar 

  • Krasnov BR, Burdelov SA, Khokhlova IS, Burdelova NV (2003) Sexual size dimorphism, morphological traits and jump performance in seven species of desert fleas (Siphonaptera). J Zool Lond 261:181–189

    Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS (2004a) Sampling fleas: The reliability of host infestation data. Med Vet Entomol 18:232–240

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Khokhlova IS, Burdelov SA, Fielden LJ (2004b) Metabolic rate and jumping performance in seven species of desert fleas. J Insect Physiol 50:149–156

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Khokhlova IS, Burdelova NV, Mirzoyan NS, Degen AA (2004c) Fitness consequences of density-dependent host selection in ectoparasites: Testing reproductive patterns predicted by isodar theory in fleas parasitizing Rodents. J Anim Ecol 73:815–820

    Article  Google Scholar 

  • Kristensen NP (1981) Phylogeny of insect orders. Ann Rev Entomol 26:135 157

    Article  Google Scholar 

  • Lawrence W, Foil LD (2002) The effect of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae). J Vector Ecol 27:39–43

    PubMed  CAS  Google Scholar 

  • Lewis RE, Grimaldi D (1997) A pulicid flea in Miocene amber from the Dominican Republic (Insecta: Siphonaptera: Pulicidae). Amer Mus Nov 3205:1–9

    Google Scholar 

  • Lindsay LR, Galloway TD (1998) Reproductive status of four species of fleas (Insecta: Siphonaptera) on Richardson’s ground squirrel (Rodentia: Sciuridae) in Manitoba, Canada. J Med Entomol 35:423–430

    PubMed  CAS  Google Scholar 

  • Margalit Y, Shulov AS (1972) Effect of temperature on development of prepupa and pupa of the rat flea, Xenopsylla cheopis Rothschild. J Med Entomol 9:117–125

    PubMed  CAS  Google Scholar 

  • Marshall AG (1981) The ecology of ectoparasitic insects. Acad Press, London

    Google Scholar 

  • Medvedev SG (1996) Geographical distribution of families of fleas (Siphonaptera). Entomol Rev 76:978–992

    Google Scholar 

  • Medvedev SG (1997a) Host-parasite relations in fleas (Siphonaptera). I. Entomol Rev 77:318–337

    Google Scholar 

  • Medvedev SG (1997b) Host-parasite relations in fleas (Siphonaptera). II. Entomol Rev 77:511–521

    Google Scholar 

  • Medvedev SG (1998) Fauna and host-parasite relations of fleas (Siphonaptera) in the Palaearctic. Entomol Rev 78:292–308

    Google Scholar 

  • Medvedev SG (2000a) Fauna and host-parasite associations of fleas (Siphonaptera) in different zoogeographical regions of the World. I. Entomol Rev 80:409–435

    Google Scholar 

  • Medvedev SG (2000b) Fauna and host-parasite associations of fleas (Siphonaptera) in different zoogeographical regions of the World. II. Entomol Rev 80:640–655

    Google Scholar 

  • Medvedev SG (2001a) On the structure of cephalic ctenidia in fleas (Siphonaptera). Entomol Rev 81:1117–1135

    Google Scholar 

  • Medvedev SG (2001b) Peculiarities of thoracis and abdominal combs of fleas (Siphonaptera) (in Russian). Parazitologiya 35:291–306

    CAS  Google Scholar 

  • Medvedev SG (2002) Specific features of the distribution and host associations of fleas (Siphonaptera). Entomol Rev 82:1165–1177

    Google Scholar 

  • Medvedev SG (2003a) Morphological adaptations of fleas (Siphonaptera) to parasitism. I. Entomol Rev 83:1059–1080

    Google Scholar 

  • Medvedev SG (2003b) Morphological adaptations of fleas (Siphonaptera) to parasitism. II. Entomol Rev 83:1114–1129

    Google Scholar 

  • Medvedev SG (2005) An attempted system analysis of the evolution of the order of fleas (Siphonaptera) (in Russian). Lectures in Memoriam N. A. Kholodkovsky, No.57. Russian Entomol Soc and Zool Inst Russian Acad Sci, St Petersburg

    Google Scholar 

  • Medvedev SG, Lobanov AL (1999) Information-analytical system of the World fauna of fleas (Siphonaptera): Results and prospects. Entomol Rev 79:654–665

    Google Scholar 

  • Medvedev SG, Lobanov AL, Lyanguzov IA (2005) World database of fleas (Nov 2004 version). In: Bisby FA, Ruggiero MA, Wilson KL, Cachuela-Palacio M, Kimani SW, Roskov YR, Soulier-Perkins A, van Hertum J (eds) Species 2000 and ITIS catalogue of life: 2005 Annual checklist. Species 2000, Reading (CD-ROM)

    Google Scholar 

  • Metzger ME, Rust MK (1997) Effect of temperature on cat flea (Siphonaptera: Pulicidae) development and overwintering. J Med Entomol 34:173–178

    PubMed  CAS  Google Scholar 

  • Nelzina EN, Danilova GM, Tchernova GI (1963) Abundance and spatial distribution of micropopulations of hematophagous arthropods in microhabitats of Citellus pygmaeus (in Russian). Meditzinskaya Parazitologiya i Parazitarnye Bolezni [Medical Parasitology and Parasitic Diseases] 32:45–54

    Google Scholar 

  • Novokrestchenova NS (1960) Data on the ecology of fleas of Citellus pygmaeus in relation to their epizootological importance (in Russian). Trudy Protivochumnogo Instituta “Microb” [Proceedings of the Anti-Plague “Microb” Institute] 4:444–456

    Google Scholar 

  • Peus F (1968) Über die beiden Bernstein-Flöhe (Insecta, Siphonaptera). Palaeontol Z 42:62–72

    Google Scholar 

  • Ponomarenko AG (1976) The new insect from the Cretaceous of Transbaicalia was a probable parasite of pterosaurs (in Russian). Paleontol Zh 3:102–106

    Google Scholar 

  • Rasnitsyn AP (1992) Strashila incredibilis, a new enigmatic mecopteroid insect with possible siphonapteran affinities from upper Jurassic of Siberia. Psyche 99:323–333

    Article  Google Scholar 

  • Reiss MJ (1986) Sexual dimorphism in body size: Are larger species more dimorphic? J Theor Biol 121:163–72

    Article  Google Scholar 

  • Rensch B (1960) Evolution above the species level. Columbia Univ Press, New York

    Google Scholar 

  • Riek EF (1970) Lower Cretaceous fleas. Nature 227:746–747

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, Ford R (1966) Hormones of the vertebrate host controlling ovarian regression and copulation of the rabbit flea. Nature 211:261–266

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, Ford R (1969) Does a pheromone-like factor from the nestling rabbit stimulate impregnation and maturation in the rabbit flea? Nature 221:1169–1170

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, Ford R (1972) Breeding cycle of the flea Cediopsylla simplex is controlled by breeding cycle of host. Science 178:625–626

    Article  PubMed  CAS  Google Scholar 

  • Rothschild M, Ford R (1973) Factors influencing the breeding of the rabbit flea (Spilopsyllus cuniculi): A spring-time accelerator and a kairomone in nestling rabbit urine (with notes on Cediopsylla simplex, another “hormone bound” species). J Zool Lond 170:87–137

    Article  CAS  Google Scholar 

  • Rothschild M, Schlein J (1975) The jumping mechanism of Xenospylla cheopis. I. Exoskeletal structures and musculature. Phil Trans R Soc Lond B 271:457–489

    CAS  Google Scholar 

  • Rothschild M, Schlein J, Parker K, Neville C, Sternberg S (1973) The flying leap of the flea. Sci Amer 229:92–100

    Article  Google Scholar 

  • Rothschild M, Schlein J, Parker K, Neville C, Sternberg S (1975) The jumping mechanism of Xenospylla cheopis. III. Execution of the jump and activity. Phil Trans R Soc Lond B 271:499–515

    CAS  Google Scholar 

  • Seal SC, Bhattacharji LM (1961) Epidemiological studies of plague in Calcutta, Part 1. Bionomics of two species of rat fleas and distribution, densities and resistance of rodents in relation to the epidemiology of plague in Calcutta. Indian J Med Res 49:974–1007

    Google Scholar 

  • Silverman J, Rust MK (1983) Some abiotic factors affecting the survival of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Environ Entomol 12:490–495

    Google Scholar 

  • Silverman J, Rust MK (1985) Extended longevity of the pre-emerged adult of the cat flea (Siphonaptera: Pulicidae) and factors stimulating emergence from the pupal cocoon. Ann Entomol Soc Am 78:763–768

    Google Scholar 

  • Silverman J, Rust MK, Reierson DA (1981) Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). J Med Entomol 18:78–83

    PubMed  CAS  Google Scholar 

  • Smit FGAM (1972) On some adaptive structures in Siphonaptera. Folia Parasitol 19:5–17

    PubMed  CAS  Google Scholar 

  • Smit FGAM (1978) Fossil “fleas”. Flea News 14:1–2

    Google Scholar 

  • Snodgrass RE (1946) The skeletal anatomy of fleas (Siphonaptera). Smithsonian Misc Coll 10:1–89

    Google Scholar 

  • Sobey WR, Menzies W, Conolly D (1974) Myxomatosis: Some observations on breeding the European rabbit flea Spilopsyllus cuniculi (Dale) in an animal house. J Hyg 71:453–465

    Google Scholar 

  • Tillyard RJ (1935) The evolution of the scorpion-flies and their derivatives (order Mecoptera). Ann Entomol Soc Am 28:1–45

    Google Scholar 

  • Traub R (1980) Some adaptive modifications in fleas. In: Traub R, Starcke H (eds) Fleas. Proceedings of the international conference on fleas. Ashton Wold/Peterborough/UK/21–25 June 1977. Balkema, Rotterdam, pp 33–68

    Google Scholar 

  • Traub R (1985) Coevolution of fleas and mammals. In: Kim KC (ed) Coevolution of parasitic arthropods and mammals. John Wiley, New York, pp 295–437

    Google Scholar 

  • Tripet F, Christe P, Møller AP (2002) The importance of host spatial distribution for parasite specialization and speciaton: A comparative study of bird fleas (Siphonaptera: Ceratophyllidae). J Anim Ecol 71:735–748

    Article  Google Scholar 

  • Uvarov BP (1931) Insects and climate. Trans R Entomol Soc Lond 79:1–247

    Google Scholar 

  • Vatschenok VS (1988) Fleas — vectors of pathogens causing diseases in humans and animals (in Russian). Nauka, Leningrad

    Google Scholar 

  • Whiting MF (2002a) Phylogeny of the holometabolous insect orders: Molecular Evidence. Zool Scripta 31:3–15

    Article  Google Scholar 

  • Whiting MF (2002b) Mecoptera is paraphyletic: Multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool Scripta 31:93–104

    Article  Google Scholar 

  • Zhovtyi IF (1963) Some disputable questions of ecology of rodent fleas in relation to their medical importance (in Russian). Doklady Irkutskogo Protivotchumnogo Institute [Archives of the Irkutsk Anti-Plague Institute of Siberia and Far East] 6:96–104

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Medvedev, S.G., Krasnov, B.R. (2006). Fleas: Permanent satellites of small mammals. In: Morand, S., Krasnov, B.R., Poulin, R. (eds) Micromammals and Macroparasites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-36025-4_10

Download citation

Publish with us

Policies and ethics