Advertisement

Communication Strategies in Multi-robot Search and Retrieval: Experiences with MinDART

  • Paul E. Rybski
  • Amy Larson
  • Harini Veeraraghavan
  • Monica LaPoint
  • Maria Gini

Abstract

To explore the effects of different simple communications strategies on performance of robot teams, we have conducted a set of foraging experiments using real robots (the Minnesota Distributed Autonomous Robotic Team). Our experimental results show that more complex communication strategies do not necessarily improve task completion times, but tend to reduce variance in performance.

Keywords

Communication Strategy Real Robot Communication Experiment Multiple Robot Robot Team 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Balch and R. C. Arkin. Communication in reactive multiagent robotic systems. Autonomous Robots, 1(1):27–52, 1994.CrossRefGoogle Scholar
  2. 2.
    E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford, England, 1999.MATHGoogle Scholar
  3. 3.
    G. Dudek, M. Jenkin, and E. Milios. A taxonomy for multi-agent robotics. In T. Balch and L. E. Parker, editors, Robot Teams: From Diversity to Polymorphism, chapter 1. A K Peters Ltd, Natick, MA, 2002.Google Scholar
  4. 4.
    D. Goldberg and M. J. Matarić. Design and evaluation of robust behavior-based controllers. In T. Balch and L. E. Parker, editors, Robot Teams: From Diversity to Polymorphism. A K Peters Ltd, Natick, MA, Apr. 2002.Google Scholar
  5. 5.
    A. T. Hayes, A. Martinoli, and R. M. Goodman. Distributed odor source localization. IEEE Sensors, 2(3):260–271, 2002.CrossRefGoogle Scholar
  6. 6.
    O. Holland and C. Melhuish. Stigmergy, self-organisation, and sorting in collective robotics. Artificial Life, 5:173–202, 2000.CrossRefGoogle Scholar
  7. 7.
    B. Hölldobler and E. Wilson. The multiple recruitment systems of the african weaver ant oecophylla longinoda (latreille). Behavioral Ecology and Sociobiology, 3:19–60, 1978.CrossRefGoogle Scholar
  8. 8.
    C. Jones and M. J. Matarić. Adaptive division of labor in large-scale minimalist multi-robot systems. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 1969–1974, Las Vegas, Nevada, Oct. 2003.Google Scholar
  9. 9.
    R. C. Kube and E. Bonabeau. Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1/2):85–101, 2000.CrossRefGoogle Scholar
  10. 10.
    K. Lerman and A. Galstyan. Mathematical model of foraging in a group of robots: effect of interference. Autonomous Robots, 13:127–141, 2002.MATHCrossRefGoogle Scholar
  11. 11.
    A. Martinoli, A. Ijspeert, and F. Mondada. Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29:51–63, 1999.CrossRefGoogle Scholar
  12. 12.
    L. E. Parker. On the design of behavior-based multi-robot teams. Journal of Advanced Robotics, 10(6):547–578, 1996.CrossRefGoogle Scholar
  13. 13.
    A. Rowe, C. Rosenberg, and I. Nourbakhsh. A low cost embedded color vision system. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002.Google Scholar
  14. 14.
    P. E. Rybski, A. Larson, M. Lindahl, and M. Gini. Performance evaluation of multiple robots in a search and retrieval task. In Workshop on Artificial Intelligence and Manufacturing, pages 153–160. AAAI Press, Aug. 1998.Google Scholar
  15. 15.
    P. E. Rybski, A. Larson, A. Schoolcraft, S. Osentoski, and M. Gini. Evaluation of control strategies for multi-robot search and retrieval. In Proc. Int’l Conf. on Intelligent Autonomous Systems, pages 281–288, Marina Del Rey, CA, March 2002.Google Scholar
  16. 16.
    P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. Papanikolopoulos. Performance of a distributed robotic system using shared communications channels. IEEE Trans, on Robotics and Automation, 22(5):713–727, Oct. 2002.Google Scholar
  17. 17.
    T. Seeley. The honeybee colony as a superorganism. American Scientist, 77:546–553, 1989.Google Scholar
  18. 18.
    K. Sugawara and M. Sano. Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Physica, D100:343–354, 1997.Google Scholar
  19. 19.
    K. Sugawara and T. Watanabe. Swarming robots — foraging behavior of simple multi-robot systems. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Paul E. Rybski
    • 1
  • Amy Larson
    • 1
  • Harini Veeraraghavan
    • 1
  • Monica LaPoint
    • 1
  • Maria Gini
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolis

Personalised recommendations