Planning Behaviors of Modular Robots with Coherent Structure using Randomized Method

  • Eiichi Yoshida
  • Haruhisa Kurokawa
  • Akiya Kamimura
  • Satoshi Murata
  • Kohji Tomita
  • Shigeru Kokaji


A behavior planning method is presented for reconfigurable modular robots with coherent structure using a randomized planning. Coherent structure is introduced to cope with difficulty in planning of many degrees of freedom, in terms of control system and robot configuration. This is realized by a phase synchronization mechanism together with symmetric robot configuration, which enables the robot to generate various coherent dynamic motions. The parameters of control systems are explored using a randomized planning method called rapidly exploring random trees (RRTs). The RRT planner has an advantage of simple implementation as well as possibility of integrating differential constraints. The dynamic robot motion is thus planned and preliminary simulation results are shown to demonstrate the proposed planning scheme can generate appropriate behaviors according to environments.


Coherent Structure Behavior Planning Phase Synchronization Central Pattern Generator Modular Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Fukuda and S. Nakagawa(1998) Approach to the dynamically reconfigurable robotic system, Journal of Intelligent and Robot Systems, 1, 55/72.Google Scholar
  2. 2.
    S. Murata, et al (1994) Self-assembling machine, Proc. 1994 IEEE Int. Conf. on Robotics and Automation, 441/448.Google Scholar
  3. 3.
    Autonomous Robots (2001) Special issue on self-reconfigurable robots, 10–1.Google Scholar
  4. 4.
    IEEE/ASME Trans, on Mechatronics (2002) Special issue on reconfigurable robots, 7–4.Google Scholar
  5. 5.
    Science (2003) Shape Shifters Thread a Daunting Path Toward Reality, 301, 754/756.Google Scholar
  6. 6.
    A. Kamimura, et al (2003) Automatic Locomotion Pattern Generation for Modular Robots, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, 2003.Google Scholar
  7. 7.
    K. Kotay and D. Rus(1998) “Motion Synthesis for the Self-Reconfigurable Molecule,” Proc. 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 843/851.Google Scholar
  8. 8.
    E. Yoshida, et al (1999) A Distributed Method for Reconfiguration of 3-D homogeneous structure, Advanced Robotics, 13-4, 363/380.Google Scholar
  9. 9.
    C. Ünsal, et al.: “A modular self-reconfigurable bipartite robotic system: Implementation and Motion Planning,” Autonomous Robots, 10-1, 23/40.Google Scholar
  10. 10.
    M. Yim et al (2001) “Distributed Control for 3D Metamorphosis,” Autonomous Robots 10-1, 41/56.Google Scholar
  11. 11.
    D. Rus and M. Vona (2001) Crystalline Robots: Self-reconfiguration with Compressible Unit Modules, Autonomous Robots, 10-1, 107/124.Google Scholar
  12. 12.
    E. Yoshida, et al (2002) A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments, Int. J. Robotics Research, 21-10, 903/916.Google Scholar
  13. 13.
    Y. Zhanget al (2003) Scalable and Reconfigurable Configurations and Locomotion Gaits for Chain-type Modular Reconfigurable Robots Proc. 2003 IEEE Int. Conf. on Computational Intelligence in Robotics and Automation (CIRA2003).Google Scholar
  14. 14.
    S. Murata, et al (2002) M-TRAN: Self-reconfigurable Modular Robotic System, IEEE/ASME Transactions on Mechatronics, 7-4, 431/441.Google Scholar
  15. 15.
    S. LaValle and J. Kuffner (2001) Rapidly-Exploring Random Trees: Progress and Prospects, InB. R. Donald, K. M. Lynch, and D. Rus, eds., Algorithmic and Computational Robotics: New Directions, 293/308, A K Peters, Wellesley.Google Scholar
  16. 16.
    G. Taga (1995) A model of the Neuro-Musculo-Skeletal System for Human Locomotion II / Real-Time Adaptability under Various Constraints,” Biolog. Cybern., 73, 113/121.Google Scholar
  17. 17.
    H. Kimura, et al (1999) Realization of dynamic walking and running of the quadruped using neural oscillator, Autonomous Robots, 7-3, 247/258.Google Scholar
  18. 18.
    Hiroaki Yamaguchi, et al (2001) A distributed control scheme for multiple robotic vehicles to make group formations, Robotics and Autonomous Systems, 36, 125/147.CrossRefGoogle Scholar
  19. 19.
    S. Kokaji, et al (1996) Clock synchronization algorithm for a distributed Autonomous System, J. Robotics and Mechatronics, 8-5, 317/328.Google Scholar
  20. 20.
    C. Eldershaw and M. Yim (2001) Motion planning of legged vehicles in an unstructured environment, Proc. 2001 Int. Conf. on Robotics and Automation, 3383/3389.Google Scholar
  21. 21.
    H. Yuasa and M. Ito (1990) Coordination of Many Oscillators and Generation of Locomotory Patterns, Biol. Cybern., 63, 177/184CrossRefGoogle Scholar
  22. 22.
    H. Støyet al (2002) Using Role Based Control to Produce Locomotion in Chain-Type Self-Reconfigurable Robots IEEE Trans, on Mechatronics Google Scholar
  23. 23.
    J. Kuffner and S. LaValle (2000) RRT-Connect: an dfficient approach to single-query path planning, Proc. 2000 IEEE Int. Conf. on Roboics and Automation, 995/1001.Google Scholar
  24. 24.
    S. LaValle and J. Kuffner (1999) Randomized kinodynamic planning, Proc. 1999 IEEE Int. Conf. on Roboics and Automation 413/419.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Eiichi Yoshida
    • 1
  • Haruhisa Kurokawa
    • 1
  • Akiya Kamimura
    • 1
  • Satoshi Murata
    • 2
  • Kohji Tomita
    • 1
  • Shigeru Kokaji
    • 1
  1. 1.Intelligent Systems Institute, National Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
  2. 2.Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of TechnologyKanagawaJapan

Personalised recommendations