Skip to main content

Genetic Susceptibility to OPLL

  • Chapter
OPLL
  • 828 Accesses

Conclusions

It is our consensus that elucidation of the genetic factors involved in OPLL is a key issue for fully understanding the pathophysiology of OPLL in the search for future therapeutic methods. For a number of years efforts have been made to identify genes responsible for OPLL. Extracellular matrix genes such as COL11A2 and COL6A1 were identified as conveying genetic susceptibility, and involvement of NPPS was reported as well. Thus far, however, the results have not been consistent. Evidently, a much larger association study is required to clarify this issue. Also genetic studies in populations other than the Japanese is needed to investigate etiological identity or differences in distinct populations. Understanding the role of genetic factors in the etiology of OPLL allows more precise definition of nongenetic factors, such as environmental and lifestyle- oriented factors, which may help improve the patients’ status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lander ES, Schork N-J (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  PubMed  CAS  Google Scholar 

  2. Utsinger PD (1985) Diffuse idiopathic skeletal hyperostosis. Clin Rheum Dis 11:325–351

    PubMed  CAS  Google Scholar 

  3. Koga H, Sakou T, Taketomi E, Hayashi K, Numasawa T, Harata S, Yone K, Matsunaga S, Otterud B, Inoue I, Leppert M (1998) Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 62:1460–1467

    Article  PubMed  CAS  Google Scholar 

  4. Furushima K, Shimo-Onoda K, Maeda S, Nobukuni T, Ikari K, Koga H, Komiya S, Nakajima T, Harata S, Inoue I (2002) Large scale screening for candidate genes of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 17:128–137

    Article  PubMed  CAS  Google Scholar 

  5. Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188

    Article  PubMed  CAS  Google Scholar 

  6. Nakajima T, Jorde LB, Ishigami T, Umemura S, Emi M, Lalouel JM, Inoue I (2002) Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. Am J Hum Genet 70:108–123

    Article  PubMed  CAS  Google Scholar 

  7. Sakou T, Taketomi E, Matsunaga S, Yamaguchi M, Sonoda S, Yashiki S (1991) Genetic study of ossification of the posterior longitudinal ligament in the cervical spine with human leukocyte antigen haplotype. Spine 16:1249–1252

    Article  PubMed  CAS  Google Scholar 

  8. Numasawa T, Koga H, Ueyama K, Maeda S, Sakou T, Harata S, Leppert M, Inoue I (1999) Human retinoic receptor: complete genomic sequence and mutation search for ossification of posterior longitudinal ligament of the spine. J Bone Miner Res 14:500–508

    Article  PubMed  CAS  Google Scholar 

  9. Maeda S, Koga H, Matsunaga S, Numasawa T, Takeda J, Harata S, Sakou T, Inoue I (2001) Gender-specific haplotype association of collagen α2(XI) gene in ossification of the posterior longitudinal ligament of the spine. J Hum Genet 46:1–4

    Article  PubMed  CAS  Google Scholar 

  10. Maeda S, Ishidou Y, Koga H, Taketomi E, Ikari K, Komiya S, Takeda J, Sakou T, Inoue I (2001) Functional impact of human collagen α2(Xl) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 16:948–957

    Article  PubMed  CAS  Google Scholar 

  11. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19:271–273

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura I, Ikegawa S, Okawa A, Okuda S, Koshizuka Y, Kawaguchi H, Nakamura K, Koyama T, Goto S, Toguchida J, Matsushita M, Ochi T, Takaoka K, Nakamura Y (1999) Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum Genet 104:492–497

    Article  PubMed  CAS  Google Scholar 

  13. Koshizuka Y, Kawaguchi H, Ogata N, Ikeda T, Mabuchi A, Seichi A, Nakamura Y, Nakamura K, Ikegawa S (2002) Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 17:138–144

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa K, Yoshida K, Ikeda T, Ikegawa S, Hunt S, Takeda J, Toh S, Harata S, Nakajima T, Inoue I (2003) Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 73:812–822

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Chen Q (2000) Changes of matrilin forms during endochondral ossification: molecular basis of oligomeric assembly. J Biol Chem 275:32628–32634

    Article  PubMed  CAS  Google Scholar 

  16. Meyer PR Jr (1999) Diffuse idiopathic skeletal hyperostosis in the cervical spine. Clin Orthop 359:49–57

    Article  PubMed  Google Scholar 

  17. Trojan DA, Pouchot J, Pokrupa R, Ford RM, Adamsbaum C, Hill RO, Esdaile JM (1992) Diagnosis and treatment of ossification of the posterior longitudinal ligament of the spine: report of eight cases and literature review. Am J Med 92:296–306

    Article  PubMed  CAS  Google Scholar 

  18. Weinfeld RM, Olson PN, Maki DD, Griffiths HJ (1997) The prevalence of diffuse idiopathic skeletal hyperostosis (DISH) in two large American Midwest metropolitan hospital populations. Skeletal Radiol 26:222–225

    Article  PubMed  CAS  Google Scholar 

  19. Tsukahara S, Miyazawa N, Akagawa H, Forejtova S, Pavelka K, Tanaka T, Toh S, Tajima A, Akiyama I, Inoue I (2005, in press) COL6A1, the candidate gene for ossification of posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Inoue, I. (2006). Genetic Susceptibility to OPLL. In: Yonenobu, K., Nakamura, K., Toyama, Y. (eds) OPLL. Springer, Tokyo. https://doi.org/10.1007/978-4-431-32563-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-32563-5_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-32561-1

  • Online ISBN: 978-4-431-32563-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics