Dynamics, Roles, and Diseases of the Nuclear Membrane, Lamins, and Lamin-binding Proteins

  • Tsuneyoshi Horigome
  • Yasuhiro Hirano
  • Kazuhiro Furukawa


The nuclear envelope is the boundary between the nucleus and cytoplasm. The nuclear envelope consists of two lipid bilayers, the nuclear lamina and nuclear pore complexes (NPCs) (Fig. 1). The transfer of materials between the nucleoplasm and cytoplasm is regulated by NPCs. The nuclear envelope is also the basis of the nuclear architecture and functions. Inner nuclear membrane proteins connect the nuclear lamina and the nuclear membrane (Fig. 1). The nuclear envelope provides a platform for chromatin. The participation of inner nuclear membrane proteins in gene replication and expression has been demonstrated. The nuclear envelope also dynamically changes in structure during the cell cycle. In vertebrates, it is disassembled in the prometaphase, and reassembled at the transition from the anaphase to the telophase. Some control systems for these dynamic changes, i.e., microtubule-dynein, Ran-importinß and phosphorylation-dephosphorylation systems, were partially revealed recently. On the other hand, it has become clear that when some proteins supporting such nuclear envelope functions are mutated, unexpected diseases, i.e., muscular dystrophies, familial partial lipodystrophy, cardiomyopathy, progeria, and others, are caused.


Muscular Dystrophy Nuclear Envelope Nuclear Lamina Nuclear Envelope Protein Nuclear Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J (2002) Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96PubMedCrossRefGoogle Scholar
  2. Best S, Salvati F, Kallo J, Garner C, Height S, Thein SL, Rees DC (2003) Lamin B-receptor mutations in Pelger-Huet anomaly. Br J Haematol 123:542–544PubMedCrossRefGoogle Scholar
  3. Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327PubMedCrossRefGoogle Scholar
  4. Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L (2000) Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101:473–476PubMedGoogle Scholar
  5. Collas P, Courvalin J-C, Poccia D (1996) Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein. J Cell Biol 135:1715–1725PubMedCrossRefGoogle Scholar
  6. Cronshaw JM, Matunis MJ (2003) The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc Natl Acad Sci USA 100:5823–5827PubMedCrossRefGoogle Scholar
  7. De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N, Szepetowski P, Hammadouche T, Vandenberghe A, Stewart CL, Grid D, Levy N (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 70:726–736PubMedCrossRefGoogle Scholar
  8. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin A truncation in Hutchinson-Gilfold progeria. Science 300:2055PubMedCrossRefGoogle Scholar
  9. Ding D-Q, Tomita Y, Yamamoto A, Chikashige Y, Haraguchi T, Hiraoka Y (2000) Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Gene Cell 5:169–190CrossRefGoogle Scholar
  10. Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Nuclear envelope proteomics: Novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA 98:11943–11948PubMedCrossRefGoogle Scholar
  11. Duband-Goulet I, Courvalin J-C (2000) Inner nuclear membrane protein LBR preferentially interacts with DNA secondary structures and nucleosomal linker. Biochemistry 39:6483–6488PubMedCrossRefGoogle Scholar
  12. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298PubMedCrossRefGoogle Scholar
  13. Fairley EA, Riddell A, Ellis JA, Kendrick-Jones J (2002) The cell cycle dependent mislocalisation of emerin may contribute to the Emery-Dreifuss muscular dystrophy phenotype. J Cell Sci 115:341–354PubMedGoogle Scholar
  14. Furukawa K (1999) LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci 112:2485–2492PubMedGoogle Scholar
  15. Furukawa K, Sugiyama S, Osouda S, Goto H, Inagaki M, Horigome T, Omata S, McConnell M, Fisher PA, Nishida Y (2003) Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J Cell Sci 116, 3811–3823PubMedCrossRefGoogle Scholar
  16. Gant TM, Harris CA, Wilson KL (1999) Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2β proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J Cell Biol 144:1083–1096PubMedCrossRefGoogle Scholar
  17. Goldberg M, Jenkins H, Allen T, Whitfield WGF, Hutchison CJ (1995) Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts. J Cell Sci 108:3451–3461PubMedGoogle Scholar
  18. Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A (2003) The nuclear lamina and its functions in the nucleus. International Rev Cytol 226:1–62CrossRefGoogle Scholar
  19. Harel A, Chan RC, Lachish-Zalait A, Zimmenman E, Elbaum M, Forbes DJ (2003) Importin ß negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 14:4387–4396PubMedCrossRefGoogle Scholar
  20. Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW (2001) Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 3:1086–1091PubMedCrossRefGoogle Scholar
  21. Hoffmann K, et al (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31:410–414PubMedGoogle Scholar
  22. Holaska JM, Lee KK, Kowalski AK, Wilson KL (2003) Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J Biol Chem 278:6969–6975PubMedCrossRefGoogle Scholar
  23. Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3:848–858PubMedCrossRefGoogle Scholar
  24. Jagatheesan G, Thanumalayan S, Muralikrishna B, Rangaraj N, Karande AA, Parnaik VK (1999) Colocalization of intranuclear lamin foci with RNA splicing factors. J Cell Sci 112:4651–4661PubMedGoogle Scholar
  25. Krimm I, Ostlund C, Gilquin B, Couprie J, Hossenlopp P, Mornon J-P, Bonne G, Courvalin J-C, Worman HJ, Zinn-Justin S (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10:811–823PubMedCrossRefGoogle Scholar
  26. Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y (2003) MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci USA 100:4598–4603PubMedCrossRefGoogle Scholar
  27. Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Human Mol Genet 11:769–777CrossRefGoogle Scholar
  28. Markiewicz E, Venables R, Mauricio-Alvarez-Reyes, Quinlan R, Dorobek M, Hausmanowa-Petrucewicz I, Hutchison C (2002) Increased solubility of lamins and redistribution of lamin C in X-linked Emery-Dreifuss muscular dystrophy fibroblasts. J Struct Biol 140:241–253PubMedCrossRefGoogle Scholar
  29. Martins SB, Marstad A, Collas P (2003a) In vitro modulation of the interaction between HA95 and LAP2β by cAMP signaling. Biochemistry 42:10456–10461PubMedCrossRefGoogle Scholar
  30. Martins S, Eikvar S, Furukawa K, Collas P (2003b) HA95 and LAP2β mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication. J Cell Biol 160:177–188PubMedCrossRefGoogle Scholar
  31. Moir RD, Spann TP, Herrmann H, Goldman RD (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 149:1179–1191PubMedCrossRefGoogle Scholar
  32. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301PubMedCrossRefGoogle Scholar
  33. Nakagawa T, Hirano Y, Inomata A, Yokota S, Miyachi K, Kaneda M, Umeda M, Furukawa K, Omata S, Horigome T (2003) Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J Biol Chem 278:20395–20404PubMedCrossRefGoogle Scholar
  34. Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-Simoni F, Simon AJ, Rechavi G (2001) Nuclear membrane protein LAP2β mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 114:3297–3307PubMedGoogle Scholar
  35. Osada S, Ohmori SY, Taira M (2003) XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130:1783–1794PubMedCrossRefGoogle Scholar
  36. Ostlund C, Worman HJ (2003) Nuclear envelope proteins and neuromuscular diseases. Muscle Nerve 27:393–406PubMedCrossRefGoogle Scholar
  37. Polioudaki H, Kourmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep 2:920–925PubMedCrossRefGoogle Scholar
  38. Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15:7108–7119PubMedGoogle Scholar
  39. Rolls MM, Stein PA, Taylor SS, Ha E, McKeon F, Rapoport TA (1999) A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J Cell Biol 146:29–43PubMedGoogle Scholar
  40. Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B (2002) Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108:97–107PubMedCrossRefGoogle Scholar
  41. Schirmer EC, Florens L, Guan T, Yates JR III, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382PubMedCrossRefGoogle Scholar
  42. Silve S, Dupuy P-H, Ferrara P, Loison G (1998) Human lamin B receptor exhibits sterol C14-reductase activity in Saccharomyces cerevisiae. Biochim Biophys Acta 1392:233–244PubMedGoogle Scholar
  43. Spann TP, Goldman AE, Wang C, Huang S, Goldman RD (2002) Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol 156:603–608PubMedCrossRefGoogle Scholar
  44. Steen RL, Martins SB, Tasken K, Collas P (2000) Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J Cell Biol 150:1251–1261PubMedCrossRefGoogle Scholar
  45. Steen RL, Beullens M, Landsverk HB, Bollen M, Collas P (2003) AKAP149 is a novel PP1 specifier required to maintain nuclear envelope integrity in G1 phase. J Cell Sci 116:2237–2246PubMedCrossRefGoogle Scholar
  46. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–919PubMedCrossRefGoogle Scholar
  47. Takano M, Takeuchi M, Ito H, Furukawa K, Sugimoto K, Omata S, Horigome T (2002) The binding of lamin B receptor to chromatin is regulated by phosphorylation in the RS region. Eur J Biochem 269:943–953PubMedCrossRefGoogle Scholar
  48. Takano M, Koyama Y, Ito H, Hoshino S, Onogi H, Hagiwara M, Furukawa K, Horigome T (2004) Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts. J Biol Chem 279:13265–13271PubMedCrossRefGoogle Scholar
  49. Tsukahara T, Tsujino S, Arahata K (2002) cDNA microarray analysis of gene expression in fibroblasts of patients with X-linked Emery-Dreifuss muscular dystrophy. Muscle Nerve 25:898–901PubMedCrossRefGoogle Scholar
  50. Walther TC, Askjaer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj IW, Hetzer M (2003) RanGTP mediates nuclear pore complex assembly. Nature 424:689–694PubMedCrossRefGoogle Scholar
  51. Waterham HR, Koster J, Mooyer P, van Noort G, Kelley RI, Wilcox WR, Wanders RJA, Hennekam RCM, Oosterwijk JC (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72:1013–1017PubMedCrossRefGoogle Scholar
  52. Wilkinson FL, Holaska JM, Zhang Z, Sharma A, Manilal S, Holt I, Stamm S, Wilson KL, Morris GE (2003) Emerin interacts in vitro with the splicing-associated factor, YT521-B. Eur J Biochem 270:2459–2466PubMedCrossRefGoogle Scholar
  53. Ye Q, Callebaut I, Pezhman A, Courvalin J-C, Worman HJ (1997) Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J Biol Chem 272:14983–14989PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tsuneyoshi Horigome
    • 1
    • 2
  • Yasuhiro Hirano
    • 3
  • Kazuhiro Furukawa
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceNiigata UniversityNiigataJapan
  2. 2.Center for Transdisciplinary ResearchNiigata UniversityNiigataJapan
  3. 3.Course of Biosphere Science, Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations