Experimental Results: In vitro

  • Junji Miyakoshi


HL60 Cell Chromosomal Aberration Comet Assay Micronucleus Formation Sister Chromatid Exchange Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.8 References

  1. Antonopoulos A, Yang B, Stamm A, Heller WD, Obe G (1995) Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro. Mutat Res 346: 151–157.CrossRefGoogle Scholar
  2. Azadniv M, Klinge CM, Gelein R, Carstensen EL, Cox C, Brayman AA (1995) A test of the hypothesis that a 60 Hz magnetic field affects ornithine decarboxylase activity in mouse L929 cells in vitro. Biochem Biophys Res Commun 214:627–631.CrossRefGoogle Scholar
  3. Balcer-Kubiczek EK, Zhang XF, Harrison GH, McCready WA, Shi ZM, Han LH, Abraham JM, Ampey LL 3rd, Meltzer SJ, Jacobs MC, Davis CC (1996) Rodent cell transformation and immediate early gene expression following 60-Hz magnetic field exposure. Environ Health Perspect 104:1188–1198.Google Scholar
  4. Benane SG, Blackman CF, House DE (1996) Effect of perchloroethylene and its metabolites on intercellular communication in clone 9 rat liver cells. J Toxicol Environ Health 48:427–437.CrossRefGoogle Scholar
  5. Byus CV, Pieper SE, Adey WR(1987) The effects of low-energy 60 Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis 8:1385–1389.CrossRefGoogle Scholar
  6. Cain CD, Thomas DL, Adey WR (1993) 60 Hz magnetic field acts as co-promoter in focus formation of C3H/10T1/2 cells. Carcinogenesis 14:955–960.CrossRefGoogle Scholar
  7. Cantoni O, Sestili P, Fiorani M, Dacha M(1995) The effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA shingle/double strand breaks in oxidatively injured cells. Biochem Mol Biol Int 37:681–689.Google Scholar
  8. Cantoni O, Sestili P, Fiorani M, Dacha M (1996) Effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single strand breaks in cultured mammalian cells exposed to three different carcinogens: methylmethane sulphonate, chromate and 254nm U.V. radiation. Biochem Mol Biol Int 38:527–533.Google Scholar
  9. Cohen MM, Kunska A, Astemborski JA, McCulloch D (1986a) The effect of low-level 60-Hz electromagnetic fields on human lymphoid cells. II. Sister-chromatid exchanges in peripheral lymphocytes and lymphoblastoid cell lines. Mutat Res 172:177–184.CrossRefGoogle Scholar
  10. Cohen MM, Kunska A, Astemborski JA, McCulloch D, Paskewitz DA (1986b) Effect of lowlevel, 60-Hz electromagnetic fields on human lymphoid cells: I. Mitotic rate and chromosome breakage in human peripheral lymphocytes. Bioelectromagnetics 7:415–423.CrossRefGoogle Scholar
  11. Conti P, Gigante GE, Alesse E, Cdifone MG, Fiesche C, Reale M, Angeletti PU (1985) A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett 181:28–32.CrossRefGoogle Scholar
  12. Conti P., Gigante GE, Cifone MG, Alesse E, Ianni G, Reale M, Angeletti PU (1983) Reduced mitogenic stimulation of human lymphocytes by extremely low frequency electromagnetic fields. FEBS Lett 162:156–160.CrossRefGoogle Scholar
  13. Cossarizza A, Monti D, Sola P, Moschini G, Cadossi R, Bersani F, Franceschi C (1989a) DNA repair after γ irradiation in lymphocytes exposed to low-frequency pulsed electromagnetic fields. Radiat Res 118:161–168.CrossRefGoogle Scholar
  14. Cossarizza A, Monti D, Bersani F, Paganelli R, Montagnani G, Cadossi R, Cantini M, Franceschi C (1989b) Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. FEBS Lett 248:141–144.CrossRefGoogle Scholar
  15. Cress LW, Owen RD, Desta AB (1999) Ornithine decarboxylase activity in L929 cells following exposure to 60 Hz magnetic fields. Carcinogenesis 20:1025–1030.CrossRefGoogle Scholar
  16. Cridland NA, Gragg TA, Haylock RGE, Saunders RD (1996) Effects of 50 Hz magnetic field exposure on the rate of DNA synthesis by normal human fibroblasts. Intl J Radiat Biol 69:503–511.CrossRefGoogle Scholar
  17. Ding G-R, Wake K, Taki M, Miyakoshi J (2001) Increase in hypozanthine-guanine phosphoribosyl transferase gene mutations by exposure to electric field. Life Sci 68:1041–1046.CrossRefGoogle Scholar
  18. Ding G-R, Yaguchi H, Yoshida M, Miyakoshi J (2000) Increase in x-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-κB-inhibited cells. Biochem Biophy Res Commun 276:238–243.CrossRefGoogle Scholar
  19. Fairbairn DW, O’Neill KL (1994) The effect of electromagnetic field exposure on the formation of DNA single strand breaks in human cells. Cell Mol Biol Noisy 40: 561–567.Google Scholar
  20. Fiorani M, Cantoni O, Sestili P, Conti R, Nicolini P, Vetrano F, Dacha M(1992) Electric and/or magnetic field effects on DNA structure and function in cultured human cells. Mutat Res 282:25–29.CrossRefGoogle Scholar
  21. Frazier ME, Reese JA, Morris JE, Jostes RF, Miller DL (1990) Exposure of mammalian cells to 60-Hz magnetic or electric fields: analysis of DNA repair of induced, single-strand breaks. Bioelectromagnetics 11:229–234.CrossRefGoogle Scholar
  22. Garcia-Sagredo JM, Parada LA, Monteagudo JL (1990) Effect on SCE in human chromosomes in vitro of low-level pulsed magnetic field. Environ Mol Mutagen 16:185–188.Google Scholar
  23. Goodman R, Henderson AS (1991) Transcription and translation in cells exposed to extremely low frequency electromagnetic fields. Bioelectrochem Bioenerg 25:335–355.CrossRefGoogle Scholar
  24. Goodman R, Blank M, Lin H, Dai R, Khorkova O, Soo L, Weisbrot D, Henderson AH (1994) Increased levels of hsp 70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem Bioenerg 33:115–120.CrossRefGoogle Scholar
  25. Greene JJ, Pearson SL, Skowronski WJ, Nardone RM, Mullins JM, Krause D (1993) Genespecific modulation of RNA synthesis and degradation by extremely low frequency electromagnetic fields. Cell Mol Biol Noisy-Le-Grand 39:261–268.Google Scholar
  26. Griffin GD, Williams MW, Gailey PC (2000) Cellular communication in clone 9 cells exposed to magnetic fields. Radiat Res 153:690–698.CrossRefGoogle Scholar
  27. Harland JD, Liburdy RP (1997) Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 18: 555–562.CrossRefGoogle Scholar
  28. Hintenlang DE (1993) Synergistic effects of ionizing radiation and 60 Hz magnetic fields. Bioelectromagnetics 14:545–551.CrossRefGoogle Scholar
  29. Holian O, Astumian RD, Lee RC, Reyes HM, Attar BM, Walter RJ (1996) Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields. Bioelectromagnetics 17:504–509.CrossRefGoogle Scholar
  30. Kang KI, Bouhouche I, Fortin D, Baulieu EE, Catelli MG (1998) Luciferase activity and synthesis of HSP70 and HSP90 are insensitive to 50 Hz electromagnetic fields. Life Sci 63:489–497.CrossRefGoogle Scholar
  31. Khalil AM, Qassem W (1991) Cytogenetic effects of pulsing electromagnetic field on human lymphocytes in vitro: chromosome aberrations, sister-chromatid exchanges and cell kinetics. Mutat Res 247:141–146.Google Scholar
  32. Koana T, Okada M-O, Takashima Y, Ikehata M, Miyakoshi J (2001) Involvement of eddy currents in the mutagenicity of ELF magnetic fields. Mutat Res 476: 55–62.Google Scholar
  33. Kwee S, Raskmark P (1995) Changes in cell proliferation due to environmental non-ionizing radiation. 1. ELF electromagnetic fields. Bioelectrochem Bioenerg 36:109–114.CrossRefGoogle Scholar
  34. Lai H, Singh NP (1997) Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18:156–165.CrossRefGoogle Scholar
  35. Lacy-Hulbert A, Wilkins RC, Hesketh TR, Metcalfe JC (1995) No effect of 60 Hz electromagnetic fields onMYC or β-action expression in human leukemic cells. Radiat Res 144:9–17.CrossRefGoogle Scholar
  36. Lagroye I, Poncy JL (1997) The effect of 50 Hz electromagnetic fields on the formation of micronuclei in rodent cell lines exposed to gamma radiation. Int J Radiat Biol 72:249–254.CrossRefGoogle Scholar
  37. Lagroye I, Poncy JL (1998) Influences of 50-Hz magnetic fields and ionizing radiation on c-jun and c-fos oncoproteins. Bioelectromagnetics 19:112–116.CrossRefGoogle Scholar
  38. Li CM, Chiang H, Fu YD, Shao BJ, Shi JR, Yao GD (1999) Effects of 50 Hz magnetic fields on gap junctional intercellular communication. Bioelectromagnetics 20:290–294.CrossRefGoogle Scholar
  39. Liboff AR, Williams T Jr, Strong DM, Wistar R Jr (1984) Time-varying magnetic fields: effect on DNA synthesis. Science 223:818–820.CrossRefGoogle Scholar
  40. Liburdy RP, Sloma, TR, Sokolic RR, Yaswen P (1993) ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic action on ER+ breast cancer cell proliferation. J pineal Res 14:89–97.Google Scholar
  41. Lin H, Goodman R, Shirley-Henderson A (1994) Specific region of the c-myc promoter is responsive to electric and magnetic fields. J Cell Biochem 54:281–288.CrossRefGoogle Scholar
  42. Lin H, Han L, Blank M, Head M, Goodman R (1998a) Magnetic field activation of protein-DNA binding. J Cell Biochem 70:297–303.CrossRefGoogle Scholar
  43. Lin H, Head M, Blank M, Han L, Jin M, Goodman R, Wei, LX, Xu JC, Henderson A (1998b) Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem 69:181–188.CrossRefGoogle Scholar
  44. Lindstrom E, Lindstrom P, Berglund A, Lundgren E, Mild KH (1995) Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47.CrossRefGoogle Scholar
  45. Lindstrom E, Lindstrom P, Berglund A, Mild KH, Lundgren E (1993) Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field. J Cell Physiol 156:395–398.CrossRefGoogle Scholar
  46. Litovitz TA, Krause D, Mullins JM (1991) Effect of coherence time of the applied magnetic field on ornithine decarboxylase axtivity. Biochem biophys Res Commun 178:862–865.CrossRefGoogle Scholar
  47. Livingston GK, Witt KL, Gandhi OP, Chatterjee I, Roti-Roti JL (1991) Reproductive integrity of mammalian cells exposed to power frequency electromagnetic fields. Environ Mol Mutagen 17:49–58.Google Scholar
  48. Lyle DB, Fuchs TA, Casamento JP, Davis CC, Swicord ML (1997) Intracellular calcium signaling by Jurkat T-lymphocytes exposed to a 60 Hz magnetic field. Bioelectromagnetics 18:439–445.CrossRefGoogle Scholar
  49. Miyakoshi J, Kitagawa K, Takebe H (1997) Mutation induction by high-density, 50-Hz magnetic fields in human MeWo cells exposed in the DNA synthesis phase. Int J Radiat Biol 71:75–79.CrossRefGoogle Scholar
  50. Miyakoshi J, Koji Y, Wakasa T, Takebe H (1999) Long-term exposure to a magnetic field (5 mT at 60 Hz) increases X-ray-induced mutations. J Radiat Res 40:13–21.CrossRefGoogle Scholar
  51. Miyakoshi J, Yoshida M, Shibuya K, Hiraoka M(2000a) Exposure to strong magnetic fields at power frequency potentiates x-ray-induced DNA strand breaks. J Radiat Res 41:293–302.CrossRefGoogle Scholar
  52. Miyakoshi J, Yoshida M, Yaguchi H, Ding, G-R (2000b) Exposure to extremely low frequency magnetic fields suppresses X-ray-induced transformation in mouse C3H10T1/2 cells. Biochem. Biophy. Res. Commun. 271:323–327CrossRefGoogle Scholar
  53. Miyakoshi J, Mori Y, Yaguchi H, Ding G, Fujimori A (2000c) Suppression of heat-induced HSP-70 by simultaneous exposure to 50 mT magnetic field. Life Sci. 66: 1187–1196CrossRefGoogle Scholar
  54. Miyakoshi J, Mori Y, Yamagishi N, Yagi K, Takebe H (1998a) Suppression of high-density magnetic field (400 mT at 50 Hz)-induced mutations by wild-type p53 expression in human osteosarcoma cells. Biochem Biophys Res Commun 243:579–584.CrossRefGoogle Scholar
  55. Miyakoshi J, Tsukada T, Tachiiri S, Bandoh S, Yamaguchi K, Takebe H (1998b) Enhanced NOR-1 gene expression by exposure of Chinese hamster cells to high-density 50 Hz magnetic fields. Mol Cell Biochem 181:191–195.CrossRefGoogle Scholar
  56. Miyakoshi J, Ohtsu S, Tatsumi-Miyajima J, Takebe H (1994) A newly designed experimental system for exposure of mammalian cells to extremely low frequency magnetic fields. J Radiat Res 36:26–34.CrossRefGoogle Scholar
  57. Miyakoshi J, Ohtus S, Shibata T, Takebe H (1996a) Exposure to magnetic field (5 mT at 60 Hz) does not affect cell growth and c-myc gene expression. J Radiat Res 37:185–191.Google Scholar
  58. Miyakoshi J, Yamagishi N, Ohtsu S, Mohri K, Takebe H (1996b) Increase in hypoxanthineguanine phosphoribosyl transferase gene mutations by exposure to high-density 50-Hz magnetic fields. Mutat Res 349:109–114.Google Scholar
  59. Mooney NA, Smith RE, Watson BW (1986) Effect of extremely-low-frequency pulsed magnetic fields on the mitogenic response of peripheral blood mononuclear cells. Bioelectromagnetics 7:387–394.CrossRefGoogle Scholar
  60. Morandi MA, Pak, CM, Caren RP, Caren LD (1996) Lack of an EMF-induced genotoxic effect in the Ames assay. Life Sci 59:263–271.CrossRefGoogle Scholar
  61. Nafziger J, Desjobert H, Benamar B, Guillosson JJ, Adolphe M (1993) DNA mutations and 50 Hz electromagnetic fields. Bioelectrochem Bioenerg 30:133–141.CrossRefGoogle Scholar
  62. Narita K, Hanakawa K, Kasahara T, Hisamitsu T, Asano, K (1997) Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: analysis of the possible mechanisms in vitro. In Vivo 11:329–335.Google Scholar
  63. Nordenson I, Mild KH, Andersson G, Sandstrom M (1994) Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields. Bioelectromagnetics 15:293–301.CrossRefGoogle Scholar
  64. Ohtsu S, Miyakoshi J, Tsukada T, Hiraoka M, Abe M, Takebe, H (1995) Enhancement of β-galactosidase gene expression in rat pheochromocytoma cells by exposure to extremely low frequency magnetic fields. Biochem Biophys Res Commun 212:104–109.CrossRefGoogle Scholar
  65. Paile W, Jokela K, Koivistoinen A, Salomaa S (1995) Effects of 50Hz sinusoidal magnetic fields and spark discharges on human lymphocytes in vitro. Bioelectrochem Bioenerg 36:15–22.CrossRefGoogle Scholar
  66. Phillips JL, Haggren W, Thomas WJ, Ishida-Jones T, Adey WR (1992) Magnetic field-induced changes in specific gene transcription. Biochim Biophys Acta 1132:140–144.Google Scholar
  67. Rao S, Henderson AS (1996) Regulation of c-fos is affected by electromagnetic fields. J Cell Biochem 63:358–365.CrossRefGoogle Scholar
  68. Reese JA, Jostes RF, Frazier ME (1988) Exposure of mammalian cells to 60-Hz magnetic or electric fields: analysis for DNA single-strand breaks. Bioelectromagnetics 9:237–247.CrossRefGoogle Scholar
  69. Rodegerdts EA, Gronewaller EF, Kehlback R, Roth P, Wiskirchen J, Gebert R, Claussen CD, Duda, SH (2000) In vitro evaluation of teratogenic effects by time-varying MR gradient fields on fetal human fibroblasts. J Magn Reson Imaging 12:150–156.CrossRefGoogle Scholar
  70. Rosenthal M, Obe G (1989) Effects of 50-hertz electromagnetic fields on proliferation and on chromosomal alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens. Mutat Res 210:329–335.Google Scholar
  71. Saalman E, Onfelt A, Gillstedt-Hedman B (1991) Lack of c-mitotic effects in V79 Chinese hamster cells exposed to 50 Hz magnetic fields. Bioelectrochem Bioenerg 26:335–338.CrossRefGoogle Scholar
  72. Saffer JD, Chen G, Colburn NH, Thurston SJ (1997) Power frequency magnetic fields do not contribute to transformation of JB6 cells. Carcinogenesis 18:1365–1370.CrossRefGoogle Scholar
  73. Saffer JD, Thurston SJ (1995) Short exposures to 60 Hz magnetic fields do not alter MYC expression in HL60 or Daudi cells. Radiat Res 144:18–25.CrossRefGoogle Scholar
  74. Scarfi MR, Bersani F, Cossarizza A, Monti D, Castellani G, Cadossi R, Franceschetti G, Franceschi C (1991) Spontaneous and mitomycin-C-induced micronuclei in human lymphocytes exposed to extremely low frequency pulsed magnetic fields. Biochem Biophys Res Commun 176:194–200.CrossRefGoogle Scholar
  75. Scarfi MR, Bersani F, Cossarizza A, Monti D, Zeni O, Lioi MB, Franceschetti G, Capri M, Franceschi C (1993) 50 Hz AC sinusoidal electric fields do not exert genotoxic effects (micronucleus formation) in human lymphocytes. Radiat Res 135:64–68.CrossRefGoogle Scholar
  76. Scarfi MR, Lioi MB, Zeni O, Franceschetti G, Franceschi C, Bersani F (1994) Lack of chromosomal aberration and micronucleus induction in human lymphocytes exposed to pulsed magnetic fields. Mutat Res 306:129–133.Google Scholar
  77. Scarfi MR, Lioi MB, Zeni O, Della-Noce M, Franceschi C, Bersani F (1999) Micronucleus frequency and cell proliferation in human lymphocytes exposed to 50 Hz sinusoidal magnetic fields. Health Phys 76:244–250.CrossRefGoogle Scholar
  78. Schimmelpfeng J, Dertinger H (1997) Action of a 50 Hz magnetic field on proliferation of cells in culture. Bioelectromagnetics 18:177–183.CrossRefGoogle Scholar
  79. Simko M, Kriehuber R, Lange S (1998a)Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat Res 418:101–111.Google Scholar
  80. Simko M, Kriehuber R, Weiss DG, Luben RA (1998b) Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics 19:85–91.CrossRefGoogle Scholar
  81. Suri A, deBoer J, Kusser W, Glickman BW(1996) A 3 milliTesla 60 Hz magnetic field is neither mutagenic nor co-mutagenic in the presence of menadione and MNU in a transgenic rat cell line. Mutat Res 372:23–31.Google Scholar
  82. Tachiiri S, Takebe H, Hiraoka M, Miyakoshi J (1999) magnetic fields (60Hz, 5mT) do not influence MCF-7 growth in melatonin insensitive cells. n: Bersani, F (ed), Electricity and Magnetism in Biology and Medicine. New York: Kluwer Academic/Plenum Publishers: 841–843.Google Scholar
  83. Takahashi K, Kaneko I, Date M, Fukada E (1986) Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia 42:185–186.CrossRefGoogle Scholar
  84. Takahashi K, Kaneko I, Date M, Fukada E (1987) Influence of pulsing electromagnetic field on the frequency of sister-chromatid exchanges in cultured mammalian cells. Experientia 43:331–332.CrossRefGoogle Scholar
  85. Uckun FM, Kurosaki T, Jin J, Jun X, Morgan A, Takata M, Bolen J, Luben R (1995) Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates lyn kinase. J Biol Chem 270:27666–27670.CrossRefGoogle Scholar
  86. Walleczek J, Liburdy RP (1990) Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett 271:157–160.CrossRefGoogle Scholar
  87. Walleczek J, Shiu EC, Hahn GM (1999) Increase in radiation-induced HPRT gene mutation frequency after nonthermal exposure to nonionizing 60 Hz electromagnetic fields. Radiat Res 151:489–497.CrossRefGoogle Scholar
  88. West RW, Hinson WG, Swicord ML (1996) Anchorage-independent growth with JB6 cells exposed to 60 Hz magnetic fields at several flux densities. Bioelectrochem Bioenerg 39:175–179.CrossRefGoogle Scholar
  89. Yaguchi H, Yoshida M, Ding G-R, Shingu K, Miyakoshi J (2000) Increased chromatid-type chromosomal aberrations in mouse m5S cells exposed to power-line frequency magnetic fields. Int J Radiat Biol 76:1677–1684.CrossRefGoogle Scholar
  90. Yaguchi H, Yoshida M, Ejima Y, Miyakoshi J (1999) Effect of high-density extremely low frequency magnetic field on sister chromatid exchanges in mouse m5S cells. Mutat Res 440:189–194.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Junji Miyakoshi
    • 1
  1. 1.Hirosaki UniversityHirosakiJapan

Personalised recommendations