Skip to main content

Experimental Results: In vivo

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.7 References

  • Aaron RK, Ciombor DM (1996) Acceleration of experimental endochondral ossification by stimulation of the progenitor cell pool. J Orthop Res 14:582–589.

    Article  Google Scholar 

  • Aaron RK, Ciombor DM, Keeping H, Wang S, Capuano A, Polk C (1999) Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-β1 expression. Bioelectromagnetics 20:453–458.

    Article  Google Scholar 

  • Albright JW, Albright JF (1998) Impaired natural killer cell function as a consequence of aging. Exp Gerontol 33:13–25.

    Article  Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception bymagnetic coil stimulation of human occipital cortex. Electroenceph Clin Neurol 74:458–462.

    Article  Google Scholar 

  • Amassian VE, Maccabee PJ, Cracco RQ et al. (1994) The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implication for the site of excitation. Electroencephol Clin Neurol 93:21–26.

    Article  Google Scholar 

  • Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML (1984) Pulsed magnetic field therapy for tibial non-union. Lancet, May: 994–996.

    Article  Google Scholar 

  • Bassett CA, Mitchell SN, Gaston SR (1981) Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg [Amer] 63A:511–523.

    Google Scholar 

  • Bassett CA, Pawluk RJ, Pills AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575–577.

    Article  Google Scholar 

  • Belenky MA, Smeraski CA, Provencio I, Sollers PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393.

    Article  Google Scholar 

  • Bell GB, Marino AA, Chesson AL (1992) Alterations in brain activity caused by magnetic fields: detecting the detection process. Electroenceph Clin Neurophysiol 83:389–397.

    Article  Google Scholar 

  • Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E (1999) Chronic repetitive transcranial magnetic stimulation alters β-adrenergic and 5-HT2 receptor characteristics in rats brain. Brain Res 816:78–83.

    Article  Google Scholar 

  • Borgens RB (1999) Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91:251–264.

    Article  Google Scholar 

  • Borgens RB, Shi R (1995) Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneuronal tube potential. Dev. Dynamics 20:456–467.

    Google Scholar 

  • Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617.

    Article  Google Scholar 

  • Borgens RB, Blight AR, Murphys DJ, Stewart L (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Com Neurol 250:168–180.

    Article  Google Scholar 

  • Brendel H, Niehaus M, Lerchl A (2000) Direct suppressive effects of weak magnetic fields (50 Hz and 162/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). J Pineal Res 29:228–233.

    Article  Google Scholar 

  • Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1998) Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. Scand J Work Environ Health 24:183–189.

    Google Scholar 

  • Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1999a) Reduced excretion of melatonin metabolite in workers exposed to 60 Hz magnetic fields. Amer J Epidemiol 150:27–36.

    Google Scholar 

  • Burch JB, Reif JS, Yost MG (1999b) Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett 266:209–212.

    Article  Google Scholar 

  • Burch JB, Reif JS, Noonan CW, Yost MG (2000) Melatonin metabolite levels in workers exposed to 60-Hz magnetic fields: work in substations and with 3-phase conductors. JOEM 42:136–142.

    Article  Google Scholar 

  • Burchard JF, Nguyen DH, Block E (1998a) Effects of electric and magnetic fields on nocturnal melatonin concentrations in dairy cows. J Dairy Sci 81:722–727.

    Google Scholar 

  • Burchard JF, Nguyen DH, Block E (1998b) Progesterone concentrations during estrous cycle of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 19:438–443.

    Article  Google Scholar 

  • Cabanes L, Gary C (1981) La perception directe de champ electrique. Proceeding of CIGRE, Stockholm, 233–240.

    Google Scholar 

  • Calvo AC, Azanza MJ (1999) Synaptic activity under applied 50 Hz alternating magnetic fields. Comp Biochem Physiol C 124:99–107.

    Google Scholar 

  • Chichibu S (1970) Bioelectricity of the fish. (Japanese text) In: Iwase Y, Tamashige M, Furukawa T (eds) Bioelectricity. Tokyo: Nanzando Pt. Co, pp. 347–374.

    Google Scholar 

  • Choi YM, Jeong JH, Kim JS, Lee B-C, Je HD, Sohn UD (2003) Extremely low frequency magnetic field exposure modulates the diurnal rhythm of the pain threshold in mice. Bioelectromagnetics 24:206–210.

    Article  Google Scholar 

  • Coelho AM Jr, Easley SP, Rogers WR (1991) Effects of exposure to 30 kV/m, 60 Hz electric fields on the social behavior of baboons. Bioelectromagnetics 12:117–135.

    Article  Google Scholar 

  • Coelho AM Jr, Rogers WR, Easley SP (1995) Effect of concurrent exposure to 60 Hz electric and magnetic fields on the social behavior of baboons. Bioelectromagnetics Suppl 3:71–92.

    Article  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190.

    Article  Google Scholar 

  • Cossarizza A, Monti D, Bersani F, Cantini M, Cadossi R, Sacchi A, Franceachi C (1989) Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochem Biophys Res Comm 160: 692–698

    Article  Google Scholar 

  • Crasson M, Legros J-J, Scarpa P, Legros W(1999) 50 Hz magnetic field exposure influence on human performance and psychophysiological parameters: two double-blind experimental studies. Bioelectromagnetics 20:474–486.

    Article  Google Scholar 

  • Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo III JF (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. New Eng J Med. 332:6–11.

    Article  Google Scholar 

  • D’Arsonval MA (1896) Dispositifs pour la mesure des courants alternatifs de toutes frequencies. Compt Rend Soc Biol 3:450–451.

    Google Scholar 

  • Daeuper J, Peschel T, Schrader C, Kohlmetz C et al. (2002) Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability. Neurology 59:700–706.

    Google Scholar 

  • Davis S, Kaune WT, Mirick DK, Chen C, Stevens RG (2001) Residential magnetic fields, light-at-night and nocturnal urinary 6-sulfatoxymelatonin concentration in women. Am J Epidemiol 154:591–600.

    Article  Google Scholar 

  • Deno DW (1976) Transmission line fields. IEEE Trans Power Appar Sys 95:1600–1611.

    Google Scholar 

  • Dhanvantrai S, Wiebe JP (1994) Suppression of follicle-stimulating hormone by the gonadal and neurosteroid, 3a-hydroxy-4-pregnen-20-one involves actions at the level of the gonadotrope membrane/calcium channel. Endocrinology 134:371–376.

    Article  Google Scholar 

  • Dietrich FM, Feero WE, Robertson DC, Sicree RM (1992) Measurement of power system magnetic fields by waveform capture. Electric Power Research Institute TR-100061 EPRI Report.

    Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA et al. (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397.

    Google Scholar 

  • Dixey R, Rein G (1982) 3H-noradrenaline release potentiated in a clonal nerve cell line by low intensity pulsed magnetic fields. Nature 296:253–256.

    Article  Google Scholar 

  • Dubey N, Letourneau PC, Tranquillo RT (1999) Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 158:338–350.

    Article  Google Scholar 

  • Easley SP, Coelho AM Jr, Rogers WR (1991) Effects of exposure to 60 kV/m electric fields on the social behavior of baboon. Bioelectromagnetics 12:361–375.

    Article  Google Scholar 

  • Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Physical Soc Japan 12:1158–1162.

    Article  Google Scholar 

  • Furukawa S, Furukawa Y (2000) Recent progress in the studies of neurotrophic factors (Japanese text). Adv Neurol Sci 44:339–349.

    Google Scholar 

  • George M, Ketter TA, Post RM (1994) Prefrontal cortex dysfunction in clinical depression. Depression 2:59–72.

    Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330.

    Article  Google Scholar 

  • Graham C, Cook MR, Riffle DW, Gerkovich MM, Cohen HD (1996a) Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics 17:263–273.

    Article  Google Scholar 

  • Graham C, Cook MR, Riffle DW(1996b) Human melatonin during continuous magnetic field exposure. Bioelectromagnetics 18:166–171.

    Article  Google Scholar 

  • Graham C, Cook MR, Sastre A, Riffle DW, Gerkovich MM (2000) Multi-night exposure to 60 Hz magnetic fields: effects on melatonin and its enzymatic metabolite. J Pineal Res. 28: 1–8

    Article  Google Scholar 

  • Graham C, Cook MR, Gerkovich MM, Sastre A (2001) Melatonin and 6-OHMS in highintensity magnetic fields. J Pineal Res 31:85–88.

    Article  Google Scholar 

  • Graham C, Cook MR, Cohen HD, Riffle DW, Hoffman S, Gerkovich MM (1999) Human exposure to 60-Hz magnetic fields: neurophysiological effects. Intern J Psychophysiol 33:169–175.

    Article  Google Scholar 

  • Haeussler M, Thun-Battersby S, Mevissen M, Loescher W (1999) Exposure of rats to a 50-Hz, 100 µTesla magnetic field does not affect the ex vivo production of interleukins by activated T or B lymphocytes. Bioelectromagnetics 20:295–305.

    Article  Google Scholar 

  • Hefeneider SH, McCoy SL, Hausman FA, Christensen HL, Takahashi D, Perrin N, Bracken TD, Shin KY, Hall AS (2001) Long-term effects of 60-Hz electric vs. magnetic fields on IL-1 and IL-2 activity in sheep. Bioelectromagnetics 22:170–177.

    Article  Google Scholar 

  • Heumann R, Korsching S, Scott J, Thoenen H (1984) Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 3:3183–3189.

    Google Scholar 

  • House RV, McCormick DL (2000) Modulation of natural killer cell function after exposure to 60 Hz magnetic fields: confirmation of the effect in mature B6C3F1 mice. Radiat Res 153:722–724.

    Article  Google Scholar 

  • House RV, Ratajczak HV, Gauger JR, Johnson TR, Thomas PT, McCormick, DL (1996) Immune function and host defense in rodents exposed to 60-Hz magnetic fields. Fund Appl Toxicol 34:228–239.

    Article  Google Scholar 

  • Huuskonen H, Saastamoinen V, Komulainen H, Laitinen J, Juutilainen J (2000) Effects of low-frequency magnetic fields on implantation in rats. ReproducToxicol 15:49–59.

    Google Scholar 

  • Jaffe LF, Poo MM (1979) Neurites grow faster toward the cathode than the anode in a steady field. J. Exp Zool 209:115–127.

    Article  Google Scholar 

  • Jeong JH, Choi KB, Yi BC, Chun CH, Sung JY, Gimm YM, Hu IH, Sohn UD (2000) Effects of extremely low frequency magnetic fields on pain thresholds in mice: roles of melatonin and opioids. J Auton Pharmacol 20:259–264.

    Article  Google Scholar 

  • Jonai H, Villanueva MB, Yasuda A (1996) Cytokine profile of human peripheral blood mononuclear cells exposed to 50Hz EMF. Ind Health 34:359–368.

    Google Scholar 

  • Juutilainen J, Stevens RG, Anderson LE, Hansen NH, Kilpelaeinen M, Kumlin T, Laitinen JT, Sobel E, Wilson BW (2000) Nocturnal 6-hydroxymelatonin sulfate excretion is female workers exposed to magnetic fields. J Pineal Res 28:97–104.

    Article  Google Scholar 

  • Karasek M, Woldanska-Okonska M, Czernicki J, Zylinska K, Swietoslawski J (1998) Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces melatonin concentrations in humans. J Pineal Res 25:240–244.

    Google Scholar 

  • Karasek M, Czernicki J, Woldanska-Okonska M, Zylinska K, Swietoslaski J (2000) Chronic exposure to 25 — 80 µT, 200-Hz magnetic field does not influence serum melatonin concentrations in patients with low back pain. J Pineal Res 29:81–85.

    Article  Google Scholar 

  • Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26.

    Article  Google Scholar 

  • Kato M, Honma K, Shigemitsu T, Shiga Y (1993) Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics 14:97–106.

    Article  Google Scholar 

  • Kato M, Honma K, Shigemitsu T, Shiga Y (1994a) Recovery of nocturnal melatonin concentration takes place within one week following cessation of 50 Hz circularly polarized magnetic field exposure for six weeks. Bioelectromagnetics 15:489–492.

    Article  Google Scholar 

  • Kato M, Honma K, Shigemitsu T, Shiga Y (1994b) Horizontal or vertical 50-Hz, 1 µT magnetic fields have no effect on pineal gland or plasma melatonin concentration on albino rats. Neurosci Lett 168:205–208.

    Article  Google Scholar 

  • Kato M, Honma K, Shigemitsu T, Shiga, Y (1994c) Circularly polarized 50-Hz magnetic field exposure reduces pineal gland and blood melatonin concentration of Long-Evans rats. Neurosci Lett 166:59–62.

    Article  Google Scholar 

  • Kato M, Honma K, Shigemitsu T, Shiga Y (1994d) Circularly polarized sinusoidal 50 Hz magnetic field exposure does not influence plasma testosterone levels of rats. Bioelectromagnetics 15:513–518.

    Article  Google Scholar 

  • Kato M, Shigemitsu T (1997) Effects of 50-Hz magnetic fields on pineal function in the rat. In: Stevens RG, Wilson BW, Anderson LE (eds), The Melatonin Hypothesis. Breast Cancer and Use of Electric Power. Columbus: Battelle Press, pp. 337–376.

    Google Scholar 

  • Kato M, Shigemitsu T, Yamazaki K, Kikuchi T, Ooba W (1999) 50 Hz magnetic field exposure and melatonin in rat. In: Bersani F (ed), Electricity and Magnetism in Biology and Medicine. New York: Kluwer Academic/Plenum, pp. 67–68.

    Google Scholar 

  • Kato M, Ohta S, Kobayashi T, Matsumoto G (1986) Response of sensory receptors of the cat’s hindlimb to a transient, step-function DC electric field. Bioelectromagnetics 7:395–404.

    Article  Google Scholar 

  • Kato M, Ohta S, Shimizu K, Matumoto G (1989) Detection threshold of 50 Hz electric fields by human subjects. Bioelectromagnetics 10:319–327.

    Article  Google Scholar 

  • Kavaliers M, Wiebe JP, Ossenkopp K-P (1998) Brief exposure of mice to 60 Hz magnetic fields reduces the analgesic effects of the neuroactive steroid, 3a-hydroxy-4-pregnen-20-one. Neurosci Lett 257:155–158.

    Article  Google Scholar 

  • Kavaliers M, Ossenkopp K-P, Prato FS, Innes DGL, Galea LAM, Kinsella DM, Perrot-Sinai T-S (1996) Spatial learning in deer mice: Sex differences and the effects of endogenous opioids and 60 Hz magnetic fields. J Comp. Physiol A 179:715–724.

    Article  Google Scholar 

  • Kavaliers M, Ossenkopp KP (1986) Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Res 379:30–38.

    Article  Google Scholar 

  • Kole MHP, Fuchs E, Ziemann U, Paulus W, Ebert U (1999) Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 826:309–312.

    Article  Google Scholar 

  • Korneva HA, Grigoriev VA, Isaeva EN, Kaloshina SM, Barnes FS (1999) Effects of lowlevel 50 Hz magnetic fields on the level of host defense and on spleen colony formation. Bioelectromagnetics 20:57–63.

    Article  Google Scholar 

  • Lai, H (1996) Spatial learning deficit in the rat after exposure to a 60 Hz magnetic field. Bioelectromagnetics 17:494–496.

    Article  Google Scholar 

  • Lai H, Carino M (1998) Intracerebroventricular injection of mu-and delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat. Bioelectromagnetics 19:432–437.

    Article  Google Scholar 

  • Lai H, Carino M (1999) 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration. Bioelectromagnetics 20:284–289.

    Article  Google Scholar 

  • Lai H, Carino M, Horita A, Guy AW (1993) Effects of a 60-Hz magnetic field on central cholinergic systems of the rat. Bioelectromagnetics 14:5–15.

    Article  Google Scholar 

  • Lai H, Carino M, Ushijima I (1998) Acute exposure to a 60 Hz magnetic field affects rats water maze performance. Bioelectromagnetics 19:117–122.

    Article  Google Scholar 

  • Landry PS, Sadasivan KK, Marino AA, Albright JA (1997) Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthoped Relat Res 338:262–270.

    Article  Google Scholar 

  • Lednev VV (1991) Possible mechanisms for the influence of weak magnetic fields on biological systems. Bioelectromagnetics12:17–25.

    Article  Google Scholar 

  • Lee JM Jr, Stormshak F, Thompson JM, Thinesen P, Painter LJ, Olenchek EG, Hess DL, Forbes R, Foster DL (1993) Melatonin secretion and puberty in female lambs exposed to environmental electric and magnetic fields. Biol Reprod 49:857–864.

    Article  Google Scholar 

  • Lee JM Jr, Stormshak F, Thompson J (1997) Studies of melatonin, cortisol, progesterone and interleukin-1 in sheep exposed to EMF from a 500-kv transmission line. In: Stevens RG, Wilson BW, Anderson LE (eds): The Melatonin Hypothesis. Breast Cancer and Use of Electric Power. Columbus: Battelle Press, pp. 391–427.

    Google Scholar 

  • Lerchl A, Nonaka KO, Reiter RJ (1991) Pineal gland ‘magnetosensitivity’ to static magnetic fields is a consequence of induced electric currents (eddy currents). J Pineal Res 10:109–116.

    Google Scholar 

  • Levallois P, Dumont M, Touitou Y, Gingras S, Masse B, Gauvin D, Kroeger E, Bourdages M, Douville P (2001) Effects of electric and magnetic fields from high-power lines on female urinary excretion of 6-sulfatoxymelatonin. Am J Epidemiol 154:601–609.

    Article  Google Scholar 

  • Levi-Montalcini R (1952) Effects of mouse tumor transplantation on the nervous system. Ann NY Acad Sci 55:330–343.

    Article  Google Scholar 

  • Levine ED (1988) Psychopharmacological effects in radial-arm maze. Neurosci Biobehav Rev 12:169–175.

    Article  Google Scholar 

  • Loo C, Mitchell P, Sachdev P, McDarmont B, Parker G, Gandevia S (1999): Double-blind controlled investigation of transcranial magnetic stimulation for the treatment of resistant major depression. Am J Psychiatry 156:946–948.

    Google Scholar 

  • Longo FM, Yang T, Hamilton S, Hyde JF, Walker J, Jennes, L, Stach R, Sisken BF (1999) Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J Neurosci Res 55:230–237.

    Article  Google Scholar 

  • Loescher W, Mevissen M, Lerchl A (1998) Exposure of female rats to a 100 µT, 50 Hz magnetic field does not induce consistent changes in nocturnal levels of melatonin. Radiat Res 150:557–567.

    Article  Google Scholar 

  • Loescher W, Wahnshaffe U, Mevissen M, Lerchl A, Stamm A (1994) Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. Oncology 51:288–295.

    Article  Google Scholar 

  • Loevsund P, Oeberg PA, Nilsson SEG (1979) Influence of vision of extremely low frequency electromagnetic fields. Acta Ophthalmol 57:812–821.

    Article  Google Scholar 

  • Loevsund P, Nilsson SEG, Oeberg PA, Reuter T (1980) Magnetophosphenes: A quantitative analysis of thresholds. Med Biol Eng Comput 18:326–334.

    Article  Google Scholar 

  • Loevsund P, Nilsson SEG, Oeberg PA (1981) Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity. Med Biol Eng Comput 19:679–685.

    Article  Google Scholar 

  • Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone ocular photoreceptors. Science 284:505–507.

    Article  Google Scholar 

  • Lucas RJ, Foster RG (1999) Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin. Endocrinol 140:1520–1524.

    Article  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:213–214.

    Article  Google Scholar 

  • Luke D, Trinder J, Kennedy G, Martin M, Mitchel P, Armstrong SM (1996) The phase shifting properties of low light intensities administered during the onset of melatonin secretion. Sleep Res 25:560.

    Google Scholar 

  • Lynch HL, Deng WH, Wurtman RJ (1984) Light intensities required to suppress nocturnal melatonin secretion in albino and pigmented rats. Life Sci 35:841–847.

    Article  Google Scholar 

  • Lyskov E, Juutilainen J, Jousmaki V, Hanninen O, Medvedev S, Partanen J (1993) Influence of short-term exposure of magnetic field on the bioelectrical processes of the brain and performance. Internat J Psychophysiol 14:227–231.

    Article  Google Scholar 

  • McLeod KJ, Collazo L (2000) Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic field exposure. Radiat Res 153:706–714.

    Article  Google Scholar 

  • McLeod KJ, Donahue HJ, Levin PE, Fontaine MA, Rubin CT (1993) Electric fields modulate bone cell function in density dependent manner. J Bone Min Res 8:977–983.

    Article  Google Scholar 

  • Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ (2000) Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics 21: 272–286

    Article  Google Scholar 

  • Margonato V, Nicolini P, Conti R, Zecca L, Veicsteinas A, Cerretelli P (1995) Biologic effects of prolonged exposure to ELF electromagnetic fields in rats: II 50 Hz magnetic fields. Bioelectromagnetics 16: 343–355.

    Article  Google Scholar 

  • Martin JR, Webster HD (1973) Mitotic Schwann cells in developing nerve: their changes in shape, fine structures, and axon relationship. Develop Biol 32:417–431.

    Article  Google Scholar 

  • Martinez-Soriano F, Gimenez-Gonzalez M, Armanazas E, Ruiz-Torner A (1992) Pineal ‘synaptic ribbons’ and serum melatonin levels in the rat following the pulse action of 52-G (50 Hz) magnetic fields: An evolutive analysis over 21 days. Acta Anatomica 143:289–293.

    Article  Google Scholar 

  • Massot O, Grimaldi B, Bailly J-M, Kochanek M, Deschamps F, Lambrozo J, Fillion G (2000) Magnetic field desensitizes 5-HT1B receptors in brain: pharmacological and functional studies. Brain Res 858:143–150.

    Article  Google Scholar 

  • Matsushima S, Sakai Y, Hira Y, Kato M(1993) Effect of magnetic field on pineal gland volume and pinealocyte size in the rat. J Pineal Res 14:145–150.

    Google Scholar 

  • Mevissen M, Heaussler M, Szamel M, Emmendoerffer A, Thun-Battersby S, Loescher W (1998) Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure. Bioelectromagnetics 19:259–270.

    Article  Google Scholar 

  • Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351–366.

    Article  Google Scholar 

  • Murthy KK, Rogers WR, Smith HD (1995) Initial studies on the effects of combined 60 Hz electric and magnetic field exposure on the immune system of nonhuman primate. Bioelectromagnetics Suppl 3:93–102.

    Article  Google Scholar 

  • Olcese, JM (1990) The neurobiology of magnetic field detection in rodents. Prog Neurobiol 35:325–330.

    Article  Google Scholar 

  • Olcese J, Reuss S (1986) Magnetic field effects on pineal gland melatonin synthesis. Comparative studies on albino and pigmented rodents. Brain Res 369:365–368.

    Article  Google Scholar 

  • Olcese J, Reuss S, Vollrath L (1985) Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333:382–384.

    Article  Google Scholar 

  • Orr JL, Rogers WR, Smith HD (1995a) Detection threshold for 60 Hz electric field by nonhuman primates. Bioelectromagnetics Suppl 3:23–34.

    Article  Google Scholar 

  • Orr JL, Rogers WR, Smith HD (1995b) Exposure of baboons of combined 60 Hz electric and magnetic fields does not produce work stoppage or affect operant performance on a match-to-sample task. Bioelectromagnetics Suppl 3:61–70.

    Article  Google Scholar 

  • Ossenkopp K-P, Cain DP (1988) Inhibitory effects of acute exposure to low-intensity magnetic fields on electrically kindled seizures in rats. Brain Res 442:255–260.

    Article  Google Scholar 

  • Ossenkopp K-P, Kavaliers M(1987) Morphine-induced analgesia and exposure to 60 Hz magnetic fields: Inhibition of nocturnal analgesia is a function of magnetic field intensity. Brain Res 418:356–360.

    Article  Google Scholar 

  • Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:81–91.

    Article  Google Scholar 

  • Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M (1994a) Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology 44:884–891.

    Google Scholar 

  • Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M (1994b) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898.

    Google Scholar 

  • Pascual-Leone A, Catala MD, Pascual-Leone PA (1996a) Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology 46:499–502.

    Google Scholar 

  • Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996b) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348: 233–237

    Article  Google Scholar 

  • Pessina GP, Aldinucci C (1998) Pulsed electromagnetic fields enhance the induction of cytokines by peripheral blood mononuclear cells challenged with phytohemagglutinin. Bioelectromagnetics 19:445–451.

    Article  Google Scholar 

  • Pessina GP, Aldinucci C, Pessina F (1999) Cytokine production by human peripheral blood mononuclear cells exposed to low-frequency electromagnetic field. Electro-Magnetobiol 18:107–118.

    Google Scholar 

  • Petersen NT, Pyndt HS, Nielsen JB (2003) Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 152:1–16.

    Article  Google Scholar 

  • Pflueger DH, Minder CE (1996) Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers. J Pineal Res 21:91–100.

    Google Scholar 

  • Phillips JB (2005) Animal magnetoreception: future direction. Abstract. Bioelectromagnetics 26: 160–161.

    Google Scholar 

  • Phillips JB, Borland SC (1992): Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144.

    Article  Google Scholar 

  • Phillips JB, Deutschlander ME (1997) Magnetoreception in terrestrial vertebrates: implications for possible mechanisms of EMF interactions with biological systems. In: Stevens RG, Wilson BW, Anderson LE (eds), The Melatonin Hypothesis. Columbus: Battelle Press, pp.111–172.

    Google Scholar 

  • Picazo ML, de Miguel MP, Leyton V, Franco P, Varela L, Paniagua R, Bardasano L 1995) Long-term effects of ELF magnetic fields on the mouse testis and serum testosterone levels. Electro-and Magnetobiol 14:127–134.

    Google Scholar 

  • Podd J, Abbott J, Kazantzis N, Rowland A (2002) Brief exposure to a 50 Hz, 100 micro T magnetic field: effects on reaction time, accuracy, and recognition memory. Bioelectromagnetics 23:189–195.

    Article  Google Scholar 

  • Potschka H, Thun-Battersby S, Loescher W (1998) Effect of low-intensity 50-Hz magnetic fields on kindling acquisition and fully kindled seizures in rats. Brain Res 809:269–276.

    Article  Google Scholar 

  • Prato FS, Carson JJL, Ossenkopp K-P, Kavaliers M (1995) Possible mechanisms by which extremely low frequency magnetic fields affect opioid function. FASEB J 9:807–814.

    Google Scholar 

  • Prato FS, Kavaliers M, Thomas AW (2000) Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.

    Article  Google Scholar 

  • Preece AW, Wesnes KA, Iwi GR (1998) The effect of a 50 Hz magnetic field on cognitive function in humans. Int J Radiat Biol 74:463–470.

    Article  Google Scholar 

  • Raybourn MS (1983) The effect of direct-current magnetic fields on turtle retinas in vitro. Science 220:715–717.

    Article  Google Scholar 

  • Reiter RJ, Anderson LE, Buschbom RL, Wilson BW (1988) Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Life Sci 42:2203–2206.

    Article  Google Scholar 

  • Reuss S, Olcese J (1986) Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci Lett 64:97–101.

    Article  Google Scholar 

  • Rogers WR, Orr LJ, Reiter RJ (1993) 60-Hz electric and magnetic fields and primate melatonin. In: Blank M (ed), Electricity and Magnetism in Biology and Medicine, San Francisco: San Francisco Press, pp 393–397.

    Google Scholar 

  • Rogers WR, Orr JL, Smith HD (1995a) Nonhuman primates will not respond to turn off strong 60 Hz electric fields. Bioelectromagnetics Suppl 3:48–60.

    Article  Google Scholar 

  • Rogers WR, Orr JL, Smith HD (1995b) Initial exposure to 30 kV/m or 60 kV/m electric fields produces temporary cessation of operant behavior of nonhuman primates. Bioelectromagnetics Suppl 3:35–47.

    Article  Google Scholar 

  • Rogers WR, Reiter RJ, Smith HD, Barlow-Walden L (1995c) Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduced nocturnal serum melatonin concentration in nonhuman primates. Bioelectromagnetics Suppl 3:119–122.

    Article  Google Scholar 

  • Rogers WR, Reiter RJ, Barlow-Walden L, Smith HD (1995d) Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates. Bioelectromagnetics Suppl 3:111–118.

    Article  Google Scholar 

  • Rogers WR, Lucas JH, Cory WE, Orr JL, Smith HD (1995e) A 60 Hz electric and magentic field exposure facility for nonhiman primates: design and operational data during experiments. Bioelectromagnetics Suppl 3:2–22.

    Article  Google Scholar 

  • Rosen AD (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am J Physiol 262C: 1418–1422.

    Google Scholar 

  • Sato K, Akiyama T (1984) Kindling method. (Japanese text). In: Yamashita I, Yamauchi T (eds), Experimental Methodology of Central Nervous System. Sapporo: Hokkaido Univ Press, pp. 216–236.

    Google Scholar 

  • Schmitt O, Tucker R (1978) Human perception of moderate strength low frequency magnetic fields. IEEE Electromag Sympos, 65–70.

    Google Scholar 

  • Schneider T, Semm P (1992) The biological and possible clinical significance of magnetic influences on the pineal melatonin synthesis. Exp Clin Endocrinol 11:251–258.

    Google Scholar 

  • Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Cur Biol 13:1290–1298.

    Article  Google Scholar 

  • Selmaoui B, Touitou Y (1995) Sinusoidal 50 Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sci 57:1351–1358.

    Article  Google Scholar 

  • Selmaoui B, Touitou Y (1999) Age-related differences in serum melatonin and pineal NAT activity and in the response of rat pineal to a 50-Hz magnetic field. Life Sci 64:2291–2297.

    Article  Google Scholar 

  • Selmaoui B, Lambrozo J, Touitou Y (1996) Magnetic fields and pineal function in humans: Evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms. Life Sci 58:1539–1549.

    Article  Google Scholar 

  • Selmaoui B, Lambrozo J, Touitou Y (1997) Endocrine functions in young men exposed for one night to a 50-Hz magnetic field. A circadian study of pituitary, thyroid and adrenocortical hormones. Life Sci 61:473–486.

    Article  Google Scholar 

  • Semm P, Schneider T, Vollrath L (1980) Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288:607–608.

    Article  Google Scholar 

  • Sharrard WJW (1990) A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg [Br] 72-B:347–355.

    Google Scholar 

  • Shi R, Borgens RB (1994) Embryonic neuroepithelium sodium transport, the resulting physiological potential, and cranial development. Devel Biol 165:105–116.

    Article  Google Scholar 

  • Sienkiewicz ZJ, Haylock RGE, Saunders RD (1996) Acute exposure to power-frequency magnetic fields has no effect on the acquisition of a spatial learning task by adult male mice. Bioelectromagnetics 17:180–186.

    Article  Google Scholar 

  • Sienkiewicz ZJ, Haylock RGE, Saunders RD (1998a) Deficits in spatial learning after exposure of mice to a 50 Hz magnetic field. Bioelectromagnetics 19:79–84.

    Article  Google Scholar 

  • Sienkiewicz ZJ, Haylock RGE, Bartrum R, Saunders RD (1998b) 50 Hz magnetic field effects on the performance of a spatial learning task by mice. Bioelectromagnetics 19:486–493.

    Article  Google Scholar 

  • Sisken BF, Kanje M, Lundborg G, Kurtz W (1990) Pulsed electromagnetic fields stimulate nerve regeneration in vitro and in vivo. Res Neurol Neurosci 1:303–309.

    Google Scholar 

  • Sisken BF, Walker J, Orgel M (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem 52:404–409.

    Article  Google Scholar 

  • Song B, Zao M, Forrester J, McCaig C (2004) Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. J Cell Sci 117: 4681–4690

    Article  Google Scholar 

  • Stehle J, Reuss S, Schroder H, Henschel M, Vollrath L (1988) Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil-role of pigmentation and sex. Physiol Behav 44:91–94.

    Article  Google Scholar 

  • Takano-Yamamoto T, Kawakami M, Sakuda M (1992) Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res 71:1920–1925.

    Google Scholar 

  • Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535:261–267.

    Article  Google Scholar 

  • Thun-Battersby S, Westermann J, Loescher W (1999) Lymphocyte subset analyses in blood, spleen and lymph nodes of female Sprague-Dawley rats after short or prolonged exposure to a 50 Hz 100 µT magnetic field. Radiat Res 152:436–443.

    Article  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, et al. (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513.

    Article  Google Scholar 

  • Touitou Y (1989) Pineal and hypothalamo-pituitary-adrenal axis: in search for interaction. In: Reiter RJ and Pang SF (eds), Advances in Pineal Research. London: J Libbey 3:241–246.

    Google Scholar 

  • Touitou Y, Lambrozo J, Camus F, Charbuy H (2003) Magnetic fields and the melatonin hypothesis: a study of workers chronically exposed to 50-Hz magnetic fields. Amer J Physiol Regul Integr Comp Physiol 284:R1529–R1535.

    Google Scholar 

  • Tremblay L, Houde M, Mercier G, Gagnon J, Mandeville R (1996) Differential modulation of natural and adaptive immunity in Fischer rats exposed for 6 weeks to 60 Hz linear sinusoidal continuous-wave magnetic fields. Bioelectromagnetics 17:373–383.

    Article  Google Scholar 

  • Trimmel M, Schweiger E (1998) Effects of ELF (50 Hz, 1 mT) electromagnetic field (EMF) on concentration in visual attention, perception and memory including effects of EMF sensitivity. Toxicol Let 96/97:377–382.

    Article  Google Scholar 

  • Trinder J, Armstrong SM, O’Brien C, Luke D, Martin MJ (1996) Inhibition of melatonin secretion onset by low levels of illumination. J Sleep Res 5:77–82.

    Article  Google Scholar 

  • Truoung H, Yellon SM (1997) Effect of various acute 60 Hz magnetic field exposures on the nocturnal melatonin rise in the adult Djungarian hamster. J Pineal Res 22:177–183.

    Google Scholar 

  • Ueno S, Tashiro T, Harada K (1988) Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J Appl Phys 64:5862–5864.

    Article  Google Scholar 

  • Ueno S, Matsuda T, Fujiki M (1990) Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain. IEEE Trans Magn 26:1539–1544.

    Article  Google Scholar 

  • Wada JA, Sato M (1974) Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats: Correlative electrographic and behavioral features. Neurol 24:565–574.

    Google Scholar 

  • Wada JA (1976) Kindling. New York: Raven Press.

    Google Scholar 

  • Walker JL, Evans JM, Resig P, Guarnieri S, Meade P, Sisken BF (1994) Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp Neurol 125:302–305.

    Article  Google Scholar 

  • Warman GR, Tripp H, Warman VL, Arendt J (2003) Acute exposure to circularly polarized 50-Hz magnetic field of 200–300 microT does not affect the pattern of melatonin secretion in young men. J Clin Endocrinol Metab 88:5668–5673.

    Article  Google Scholar 

  • Weitlauf HM (1994) In: Knobil E and Neill JD (eds), The Physiology of Reproduction, 2nd ed. New York: Raven Press, pp. 391–440.

    Google Scholar 

  • Welker HA, Semm P, Willing RP, Commentz JC, Wiltschko W, Vollrath L (1983) Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exptl Brain Res 50:426–432.

    Google Scholar 

  • Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Amer J Epidemiol 109:273–284.

    Google Scholar 

  • Wilson BW, Anderson LE, Hilton DI, Phillips RD (1981) Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2:371–380.

    Article  Google Scholar 

  • Wilson BW, Chess EK, Anderson LE (1986) 60 Hz electrical field effects on pineal melatonin rhythms: Time course of onset and recovery. Bioelectromagnetics 7:239–242.

    Article  Google Scholar 

  • Wilson BW, Matt KS, Morris JE, Sasser LB, Miller DL, Anderson LE (1999) Effects of 60 Hz magnetic field exposure on the pineal and hypothalamic-pituitary-gonadal axis in the Siberian hamster (Phodopus sungorus). Bioelectromagnetics 20:224–232.

    Article  Google Scholar 

  • Wood AW, Armstrong SM, Sait ML, Devine L, Martin MJ (1998) Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J Pineal Res 25:116–127.

    Google Scholar 

  • Yasuda I (1954) Piezoelectric activity of bone. J Jap Orthoped Surg Soc 28:267–269.

    Google Scholar 

  • Yasui M(1994) Magnetic Fields Under Transmission Line(Japanese text). Power Engineering R & D Center, Tokyo Electric Power Co.

    Google Scholar 

  • Yellon SM(1994) Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster. J Pineal Res 16:136–144.

    Google Scholar 

  • Yellon SM (1996) 60-Hz magnetic field exposure effects on the melatonin rhythm and photoperiod control of reproduction. Amer J Physiol 270:E816–E821.

    Google Scholar 

  • Zecca L, Mantegazza C, Maronato V, Cerretelli P, Canatti M, Piva F, Dondi D, Hagino N(1998) Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III 50 Hz electromagnetic fields. Bioelectromagnetics 19: 57–66

    Article  Google Scholar 

  • Zhao M, Forester JV, McCaig CD (1999) A small physiological electric field orients cell division. Proc Natl Acad Sci USA 96: 4942–4946

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kato, M. (2006). Experimental Results: In vivo . In: Kato, M. (eds) Electromagnetics in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-27914-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-27914-3_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-27913-6

  • Online ISBN: 978-4-431-27914-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics