Experimental Results: In vivo

  • Masamichi Kato


Nerve Growth Factor Transcranial Magnetic Stimulation Pineal Gland Demineralized Bone Matrix Neuroactive Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.7 References

  1. Aaron RK, Ciombor DM (1996) Acceleration of experimental endochondral ossification by stimulation of the progenitor cell pool. J Orthop Res 14:582–589.CrossRefGoogle Scholar
  2. Aaron RK, Ciombor DM, Keeping H, Wang S, Capuano A, Polk C (1999) Power frequency fields promote cell differentiation coincident with an increase in transforming growth factor-β1 expression. Bioelectromagnetics 20:453–458.CrossRefGoogle Scholar
  3. Albright JW, Albright JF (1998) Impaired natural killer cell function as a consequence of aging. Exp Gerontol 33:13–25.CrossRefGoogle Scholar
  4. Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception bymagnetic coil stimulation of human occipital cortex. Electroenceph Clin Neurol 74:458–462.CrossRefGoogle Scholar
  5. Amassian VE, Maccabee PJ, Cracco RQ et al. (1994) The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implication for the site of excitation. Electroencephol Clin Neurol 93:21–26.CrossRefGoogle Scholar
  6. Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML (1984) Pulsed magnetic field therapy for tibial non-union. Lancet, May: 994–996.CrossRefGoogle Scholar
  7. Bassett CA, Mitchell SN, Gaston SR (1981) Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg [Amer] 63A:511–523.Google Scholar
  8. Bassett CA, Pawluk RJ, Pills AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575–577.CrossRefGoogle Scholar
  9. Belenky MA, Smeraski CA, Provencio I, Sollers PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393.CrossRefGoogle Scholar
  10. Bell GB, Marino AA, Chesson AL (1992) Alterations in brain activity caused by magnetic fields: detecting the detection process. Electroenceph Clin Neurophysiol 83:389–397.CrossRefGoogle Scholar
  11. Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E (1999) Chronic repetitive transcranial magnetic stimulation alters β-adrenergic and 5-HT2 receptor characteristics in rats brain. Brain Res 816:78–83.CrossRefGoogle Scholar
  12. Borgens RB (1999) Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91:251–264.CrossRefGoogle Scholar
  13. Borgens RB, Shi R (1995) Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneuronal tube potential. Dev. Dynamics 20:456–467.Google Scholar
  14. Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617.CrossRefGoogle Scholar
  15. Borgens RB, Blight AR, Murphys DJ, Stewart L (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Com Neurol 250:168–180.CrossRefGoogle Scholar
  16. Brendel H, Niehaus M, Lerchl A (2000) Direct suppressive effects of weak magnetic fields (50 Hz and 162/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). J Pineal Res 29:228–233.CrossRefGoogle Scholar
  17. Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1998) Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. Scand J Work Environ Health 24:183–189.Google Scholar
  18. Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1999a) Reduced excretion of melatonin metabolite in workers exposed to 60 Hz magnetic fields. Amer J Epidemiol 150:27–36.Google Scholar
  19. Burch JB, Reif JS, Yost MG (1999b) Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett 266:209–212.CrossRefGoogle Scholar
  20. Burch JB, Reif JS, Noonan CW, Yost MG (2000) Melatonin metabolite levels in workers exposed to 60-Hz magnetic fields: work in substations and with 3-phase conductors. JOEM 42:136–142.CrossRefGoogle Scholar
  21. Burchard JF, Nguyen DH, Block E (1998a) Effects of electric and magnetic fields on nocturnal melatonin concentrations in dairy cows. J Dairy Sci 81:722–727.Google Scholar
  22. Burchard JF, Nguyen DH, Block E (1998b) Progesterone concentrations during estrous cycle of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 19:438–443.CrossRefGoogle Scholar
  23. Cabanes L, Gary C (1981) La perception directe de champ electrique. Proceeding of CIGRE, Stockholm, 233–240.Google Scholar
  24. Calvo AC, Azanza MJ (1999) Synaptic activity under applied 50 Hz alternating magnetic fields. Comp Biochem Physiol C 124:99–107.Google Scholar
  25. Chichibu S (1970) Bioelectricity of the fish. (Japanese text) In: Iwase Y, Tamashige M, Furukawa T (eds) Bioelectricity. Tokyo: Nanzando Pt. Co, pp. 347–374.Google Scholar
  26. Choi YM, Jeong JH, Kim JS, Lee B-C, Je HD, Sohn UD (2003) Extremely low frequency magnetic field exposure modulates the diurnal rhythm of the pain threshold in mice. Bioelectromagnetics 24:206–210.CrossRefGoogle Scholar
  27. Coelho AM Jr, Easley SP, Rogers WR (1991) Effects of exposure to 30 kV/m, 60 Hz electric fields on the social behavior of baboons. Bioelectromagnetics 12:117–135.CrossRefGoogle Scholar
  28. Coelho AM Jr, Rogers WR, Easley SP (1995) Effect of concurrent exposure to 60 Hz electric and magnetic fields on the social behavior of baboons. Bioelectromagnetics Suppl 3:71–92.CrossRefGoogle Scholar
  29. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190.CrossRefGoogle Scholar
  30. Cossarizza A, Monti D, Bersani F, Cantini M, Cadossi R, Sacchi A, Franceachi C (1989) Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochem Biophys Res Comm 160: 692–698CrossRefGoogle Scholar
  31. Crasson M, Legros J-J, Scarpa P, Legros W(1999) 50 Hz magnetic field exposure influence on human performance and psychophysiological parameters: two double-blind experimental studies. Bioelectromagnetics 20:474–486.CrossRefGoogle Scholar
  32. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo III JF (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. New Eng J Med. 332:6–11.CrossRefGoogle Scholar
  33. D’Arsonval MA (1896) Dispositifs pour la mesure des courants alternatifs de toutes frequencies. Compt Rend Soc Biol 3:450–451.Google Scholar
  34. Daeuper J, Peschel T, Schrader C, Kohlmetz C et al. (2002) Effects of subthalamic nucleus (STN) stimulation on motor cortex excitability. Neurology 59:700–706.Google Scholar
  35. Davis S, Kaune WT, Mirick DK, Chen C, Stevens RG (2001) Residential magnetic fields, light-at-night and nocturnal urinary 6-sulfatoxymelatonin concentration in women. Am J Epidemiol 154:591–600.CrossRefGoogle Scholar
  36. Deno DW (1976) Transmission line fields. IEEE Trans Power Appar Sys 95:1600–1611.Google Scholar
  37. Dhanvantrai S, Wiebe JP (1994) Suppression of follicle-stimulating hormone by the gonadal and neurosteroid, 3a-hydroxy-4-pregnen-20-one involves actions at the level of the gonadotrope membrane/calcium channel. Endocrinology 134:371–376.CrossRefGoogle Scholar
  38. Dietrich FM, Feero WE, Robertson DC, Sicree RM (1992) Measurement of power system magnetic fields by waveform capture. Electric Power Research Institute TR-100061 EPRI Report.Google Scholar
  39. Di Lazzaro V, Oliviero A, Tonali PA et al. (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397.Google Scholar
  40. Dixey R, Rein G (1982) 3H-noradrenaline release potentiated in a clonal nerve cell line by low intensity pulsed magnetic fields. Nature 296:253–256.CrossRefGoogle Scholar
  41. Dubey N, Letourneau PC, Tranquillo RT (1999) Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 158:338–350.CrossRefGoogle Scholar
  42. Easley SP, Coelho AM Jr, Rogers WR (1991) Effects of exposure to 60 kV/m electric fields on the social behavior of baboon. Bioelectromagnetics 12:361–375.CrossRefGoogle Scholar
  43. Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Physical Soc Japan 12:1158–1162.CrossRefGoogle Scholar
  44. Furukawa S, Furukawa Y (2000) Recent progress in the studies of neurotrophic factors (Japanese text). Adv Neurol Sci 44:339–349.Google Scholar
  45. George M, Ketter TA, Post RM (1994) Prefrontal cortex dysfunction in clinical depression. Depression 2:59–72.Google Scholar
  46. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330.CrossRefGoogle Scholar
  47. Graham C, Cook MR, Riffle DW, Gerkovich MM, Cohen HD (1996a) Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics 17:263–273.CrossRefGoogle Scholar
  48. Graham C, Cook MR, Riffle DW(1996b) Human melatonin during continuous magnetic field exposure. Bioelectromagnetics 18:166–171.CrossRefGoogle Scholar
  49. Graham C, Cook MR, Sastre A, Riffle DW, Gerkovich MM (2000) Multi-night exposure to 60 Hz magnetic fields: effects on melatonin and its enzymatic metabolite. J Pineal Res. 28: 1–8CrossRefGoogle Scholar
  50. Graham C, Cook MR, Gerkovich MM, Sastre A (2001) Melatonin and 6-OHMS in highintensity magnetic fields. J Pineal Res 31:85–88.CrossRefGoogle Scholar
  51. Graham C, Cook MR, Cohen HD, Riffle DW, Hoffman S, Gerkovich MM (1999) Human exposure to 60-Hz magnetic fields: neurophysiological effects. Intern J Psychophysiol 33:169–175.CrossRefGoogle Scholar
  52. Haeussler M, Thun-Battersby S, Mevissen M, Loescher W (1999) Exposure of rats to a 50-Hz, 100 µTesla magnetic field does not affect the ex vivo production of interleukins by activated T or B lymphocytes. Bioelectromagnetics 20:295–305.CrossRefGoogle Scholar
  53. Hefeneider SH, McCoy SL, Hausman FA, Christensen HL, Takahashi D, Perrin N, Bracken TD, Shin KY, Hall AS (2001) Long-term effects of 60-Hz electric vs. magnetic fields on IL-1 and IL-2 activity in sheep. Bioelectromagnetics 22:170–177.CrossRefGoogle Scholar
  54. Heumann R, Korsching S, Scott J, Thoenen H (1984) Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 3:3183–3189.Google Scholar
  55. House RV, McCormick DL (2000) Modulation of natural killer cell function after exposure to 60 Hz magnetic fields: confirmation of the effect in mature B6C3F1 mice. Radiat Res 153:722–724.CrossRefGoogle Scholar
  56. House RV, Ratajczak HV, Gauger JR, Johnson TR, Thomas PT, McCormick, DL (1996) Immune function and host defense in rodents exposed to 60-Hz magnetic fields. Fund Appl Toxicol 34:228–239.CrossRefGoogle Scholar
  57. Huuskonen H, Saastamoinen V, Komulainen H, Laitinen J, Juutilainen J (2000) Effects of low-frequency magnetic fields on implantation in rats. ReproducToxicol 15:49–59.Google Scholar
  58. Jaffe LF, Poo MM (1979) Neurites grow faster toward the cathode than the anode in a steady field. J. Exp Zool 209:115–127.CrossRefGoogle Scholar
  59. Jeong JH, Choi KB, Yi BC, Chun CH, Sung JY, Gimm YM, Hu IH, Sohn UD (2000) Effects of extremely low frequency magnetic fields on pain thresholds in mice: roles of melatonin and opioids. J Auton Pharmacol 20:259–264.CrossRefGoogle Scholar
  60. Jonai H, Villanueva MB, Yasuda A (1996) Cytokine profile of human peripheral blood mononuclear cells exposed to 50Hz EMF. Ind Health 34:359–368.Google Scholar
  61. Juutilainen J, Stevens RG, Anderson LE, Hansen NH, Kilpelaeinen M, Kumlin T, Laitinen JT, Sobel E, Wilson BW (2000) Nocturnal 6-hydroxymelatonin sulfate excretion is female workers exposed to magnetic fields. J Pineal Res 28:97–104.CrossRefGoogle Scholar
  62. Karasek M, Woldanska-Okonska M, Czernicki J, Zylinska K, Swietoslawski J (1998) Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces melatonin concentrations in humans. J Pineal Res 25:240–244.Google Scholar
  63. Karasek M, Czernicki J, Woldanska-Okonska M, Zylinska K, Swietoslaski J (2000) Chronic exposure to 25 — 80 µT, 200-Hz magnetic field does not influence serum melatonin concentrations in patients with low back pain. J Pineal Res 29:81–85.CrossRefGoogle Scholar
  64. Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26.CrossRefGoogle Scholar
  65. Kato M, Honma K, Shigemitsu T, Shiga Y (1993) Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics 14:97–106.CrossRefGoogle Scholar
  66. Kato M, Honma K, Shigemitsu T, Shiga Y (1994a) Recovery of nocturnal melatonin concentration takes place within one week following cessation of 50 Hz circularly polarized magnetic field exposure for six weeks. Bioelectromagnetics 15:489–492.CrossRefGoogle Scholar
  67. Kato M, Honma K, Shigemitsu T, Shiga Y (1994b) Horizontal or vertical 50-Hz, 1 µT magnetic fields have no effect on pineal gland or plasma melatonin concentration on albino rats. Neurosci Lett 168:205–208.CrossRefGoogle Scholar
  68. Kato M, Honma K, Shigemitsu T, Shiga, Y (1994c) Circularly polarized 50-Hz magnetic field exposure reduces pineal gland and blood melatonin concentration of Long-Evans rats. Neurosci Lett 166:59–62.CrossRefGoogle Scholar
  69. Kato M, Honma K, Shigemitsu T, Shiga Y (1994d) Circularly polarized sinusoidal 50 Hz magnetic field exposure does not influence plasma testosterone levels of rats. Bioelectromagnetics 15:513–518.CrossRefGoogle Scholar
  70. Kato M, Shigemitsu T (1997) Effects of 50-Hz magnetic fields on pineal function in the rat. In: Stevens RG, Wilson BW, Anderson LE (eds), The Melatonin Hypothesis. Breast Cancer and Use of Electric Power. Columbus: Battelle Press, pp. 337–376.Google Scholar
  71. Kato M, Shigemitsu T, Yamazaki K, Kikuchi T, Ooba W (1999) 50 Hz magnetic field exposure and melatonin in rat. In: Bersani F (ed), Electricity and Magnetism in Biology and Medicine. New York: Kluwer Academic/Plenum, pp. 67–68.Google Scholar
  72. Kato M, Ohta S, Kobayashi T, Matsumoto G (1986) Response of sensory receptors of the cat’s hindlimb to a transient, step-function DC electric field. Bioelectromagnetics 7:395–404.CrossRefGoogle Scholar
  73. Kato M, Ohta S, Shimizu K, Matumoto G (1989) Detection threshold of 50 Hz electric fields by human subjects. Bioelectromagnetics 10:319–327.CrossRefGoogle Scholar
  74. Kavaliers M, Wiebe JP, Ossenkopp K-P (1998) Brief exposure of mice to 60 Hz magnetic fields reduces the analgesic effects of the neuroactive steroid, 3a-hydroxy-4-pregnen-20-one. Neurosci Lett 257:155–158.CrossRefGoogle Scholar
  75. Kavaliers M, Ossenkopp K-P, Prato FS, Innes DGL, Galea LAM, Kinsella DM, Perrot-Sinai T-S (1996) Spatial learning in deer mice: Sex differences and the effects of endogenous opioids and 60 Hz magnetic fields. J Comp. Physiol A 179:715–724.CrossRefGoogle Scholar
  76. Kavaliers M, Ossenkopp KP (1986) Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Res 379:30–38.CrossRefGoogle Scholar
  77. Kole MHP, Fuchs E, Ziemann U, Paulus W, Ebert U (1999) Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 826:309–312.CrossRefGoogle Scholar
  78. Korneva HA, Grigoriev VA, Isaeva EN, Kaloshina SM, Barnes FS (1999) Effects of lowlevel 50 Hz magnetic fields on the level of host defense and on spleen colony formation. Bioelectromagnetics 20:57–63.CrossRefGoogle Scholar
  79. Lai, H (1996) Spatial learning deficit in the rat after exposure to a 60 Hz magnetic field. Bioelectromagnetics 17:494–496.CrossRefGoogle Scholar
  80. Lai H, Carino M (1998) Intracerebroventricular injection of mu-and delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat. Bioelectromagnetics 19:432–437.CrossRefGoogle Scholar
  81. Lai H, Carino M (1999) 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration. Bioelectromagnetics 20:284–289.CrossRefGoogle Scholar
  82. Lai H, Carino M, Horita A, Guy AW (1993) Effects of a 60-Hz magnetic field on central cholinergic systems of the rat. Bioelectromagnetics 14:5–15.CrossRefGoogle Scholar
  83. Lai H, Carino M, Ushijima I (1998) Acute exposure to a 60 Hz magnetic field affects rats water maze performance. Bioelectromagnetics 19:117–122.CrossRefGoogle Scholar
  84. Landry PS, Sadasivan KK, Marino AA, Albright JA (1997) Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthoped Relat Res 338:262–270.CrossRefGoogle Scholar
  85. Lednev VV (1991) Possible mechanisms for the influence of weak magnetic fields on biological systems. Bioelectromagnetics12:17–25.CrossRefGoogle Scholar
  86. Lee JM Jr, Stormshak F, Thompson JM, Thinesen P, Painter LJ, Olenchek EG, Hess DL, Forbes R, Foster DL (1993) Melatonin secretion and puberty in female lambs exposed to environmental electric and magnetic fields. Biol Reprod 49:857–864.CrossRefGoogle Scholar
  87. Lee JM Jr, Stormshak F, Thompson J (1997) Studies of melatonin, cortisol, progesterone and interleukin-1 in sheep exposed to EMF from a 500-kv transmission line. In: Stevens RG, Wilson BW, Anderson LE (eds): The Melatonin Hypothesis. Breast Cancer and Use of Electric Power. Columbus: Battelle Press, pp. 391–427.Google Scholar
  88. Lerchl A, Nonaka KO, Reiter RJ (1991) Pineal gland ‘magnetosensitivity’ to static magnetic fields is a consequence of induced electric currents (eddy currents). J Pineal Res 10:109–116.Google Scholar
  89. Levallois P, Dumont M, Touitou Y, Gingras S, Masse B, Gauvin D, Kroeger E, Bourdages M, Douville P (2001) Effects of electric and magnetic fields from high-power lines on female urinary excretion of 6-sulfatoxymelatonin. Am J Epidemiol 154:601–609.CrossRefGoogle Scholar
  90. Levi-Montalcini R (1952) Effects of mouse tumor transplantation on the nervous system. Ann NY Acad Sci 55:330–343.CrossRefGoogle Scholar
  91. Levine ED (1988) Psychopharmacological effects in radial-arm maze. Neurosci Biobehav Rev 12:169–175.CrossRefGoogle Scholar
  92. Loo C, Mitchell P, Sachdev P, McDarmont B, Parker G, Gandevia S (1999): Double-blind controlled investigation of transcranial magnetic stimulation for the treatment of resistant major depression. Am J Psychiatry 156:946–948.Google Scholar
  93. Longo FM, Yang T, Hamilton S, Hyde JF, Walker J, Jennes, L, Stach R, Sisken BF (1999) Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J Neurosci Res 55:230–237.CrossRefGoogle Scholar
  94. Loescher W, Mevissen M, Lerchl A (1998) Exposure of female rats to a 100 µT, 50 Hz magnetic field does not induce consistent changes in nocturnal levels of melatonin. Radiat Res 150:557–567.CrossRefGoogle Scholar
  95. Loescher W, Wahnshaffe U, Mevissen M, Lerchl A, Stamm A (1994) Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. Oncology 51:288–295.CrossRefGoogle Scholar
  96. Loevsund P, Oeberg PA, Nilsson SEG (1979) Influence of vision of extremely low frequency electromagnetic fields. Acta Ophthalmol 57:812–821.CrossRefGoogle Scholar
  97. Loevsund P, Nilsson SEG, Oeberg PA, Reuter T (1980) Magnetophosphenes: A quantitative analysis of thresholds. Med Biol Eng Comput 18:326–334.CrossRefGoogle Scholar
  98. Loevsund P, Nilsson SEG, Oeberg PA (1981) Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity. Med Biol Eng Comput 19:679–685.CrossRefGoogle Scholar
  99. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone ocular photoreceptors. Science 284:505–507.CrossRefGoogle Scholar
  100. Lucas RJ, Foster RG (1999) Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin. Endocrinol 140:1520–1524.CrossRefGoogle Scholar
  101. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:213–214.CrossRefGoogle Scholar
  102. Luke D, Trinder J, Kennedy G, Martin M, Mitchel P, Armstrong SM (1996) The phase shifting properties of low light intensities administered during the onset of melatonin secretion. Sleep Res 25:560.Google Scholar
  103. Lynch HL, Deng WH, Wurtman RJ (1984) Light intensities required to suppress nocturnal melatonin secretion in albino and pigmented rats. Life Sci 35:841–847.CrossRefGoogle Scholar
  104. Lyskov E, Juutilainen J, Jousmaki V, Hanninen O, Medvedev S, Partanen J (1993) Influence of short-term exposure of magnetic field on the bioelectrical processes of the brain and performance. Internat J Psychophysiol 14:227–231.CrossRefGoogle Scholar
  105. McLeod KJ, Collazo L (2000) Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic field exposure. Radiat Res 153:706–714.CrossRefGoogle Scholar
  106. McLeod KJ, Donahue HJ, Levin PE, Fontaine MA, Rubin CT (1993) Electric fields modulate bone cell function in density dependent manner. J Bone Min Res 8:977–983.CrossRefGoogle Scholar
  107. Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ (2000) Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics 21: 272–286CrossRefGoogle Scholar
  108. Margonato V, Nicolini P, Conti R, Zecca L, Veicsteinas A, Cerretelli P (1995) Biologic effects of prolonged exposure to ELF electromagnetic fields in rats: II 50 Hz magnetic fields. Bioelectromagnetics 16: 343–355.CrossRefGoogle Scholar
  109. Martin JR, Webster HD (1973) Mitotic Schwann cells in developing nerve: their changes in shape, fine structures, and axon relationship. Develop Biol 32:417–431.CrossRefGoogle Scholar
  110. Martinez-Soriano F, Gimenez-Gonzalez M, Armanazas E, Ruiz-Torner A (1992) Pineal ‘synaptic ribbons’ and serum melatonin levels in the rat following the pulse action of 52-G (50 Hz) magnetic fields: An evolutive analysis over 21 days. Acta Anatomica 143:289–293.CrossRefGoogle Scholar
  111. Massot O, Grimaldi B, Bailly J-M, Kochanek M, Deschamps F, Lambrozo J, Fillion G (2000) Magnetic field desensitizes 5-HT1B receptors in brain: pharmacological and functional studies. Brain Res 858:143–150.CrossRefGoogle Scholar
  112. Matsushima S, Sakai Y, Hira Y, Kato M(1993) Effect of magnetic field on pineal gland volume and pinealocyte size in the rat. J Pineal Res 14:145–150.Google Scholar
  113. Mevissen M, Heaussler M, Szamel M, Emmendoerffer A, Thun-Battersby S, Loescher W (1998) Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure. Bioelectromagnetics 19:259–270.CrossRefGoogle Scholar
  114. Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351–366.CrossRefGoogle Scholar
  115. Murthy KK, Rogers WR, Smith HD (1995) Initial studies on the effects of combined 60 Hz electric and magnetic field exposure on the immune system of nonhuman primate. Bioelectromagnetics Suppl 3:93–102.CrossRefGoogle Scholar
  116. Olcese, JM (1990) The neurobiology of magnetic field detection in rodents. Prog Neurobiol 35:325–330.CrossRefGoogle Scholar
  117. Olcese J, Reuss S (1986) Magnetic field effects on pineal gland melatonin synthesis. Comparative studies on albino and pigmented rodents. Brain Res 369:365–368.CrossRefGoogle Scholar
  118. Olcese J, Reuss S, Vollrath L (1985) Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res 333:382–384.CrossRefGoogle Scholar
  119. Orr JL, Rogers WR, Smith HD (1995a) Detection threshold for 60 Hz electric field by nonhuman primates. Bioelectromagnetics Suppl 3:23–34.CrossRefGoogle Scholar
  120. Orr JL, Rogers WR, Smith HD (1995b) Exposure of baboons of combined 60 Hz electric and magnetic fields does not produce work stoppage or affect operant performance on a match-to-sample task. Bioelectromagnetics Suppl 3:61–70.CrossRefGoogle Scholar
  121. Ossenkopp K-P, Cain DP (1988) Inhibitory effects of acute exposure to low-intensity magnetic fields on electrically kindled seizures in rats. Brain Res 442:255–260.CrossRefGoogle Scholar
  122. Ossenkopp K-P, Kavaliers M(1987) Morphine-induced analgesia and exposure to 60 Hz magnetic fields: Inhibition of nocturnal analgesia is a function of magnetic field intensity. Brain Res 418:356–360.CrossRefGoogle Scholar
  123. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:81–91.CrossRefGoogle Scholar
  124. Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M (1994a) Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology 44:884–891.Google Scholar
  125. Pascual-Leone A, Valls-Sole J, Brasil-Neto JP, Cohen LG, Hallett M (1994b) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898.Google Scholar
  126. Pascual-Leone A, Catala MD, Pascual-Leone PA (1996a) Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology 46:499–502.Google Scholar
  127. Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996b) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348: 233–237CrossRefGoogle Scholar
  128. Pessina GP, Aldinucci C (1998) Pulsed electromagnetic fields enhance the induction of cytokines by peripheral blood mononuclear cells challenged with phytohemagglutinin. Bioelectromagnetics 19:445–451.CrossRefGoogle Scholar
  129. Pessina GP, Aldinucci C, Pessina F (1999) Cytokine production by human peripheral blood mononuclear cells exposed to low-frequency electromagnetic field. Electro-Magnetobiol 18:107–118.Google Scholar
  130. Petersen NT, Pyndt HS, Nielsen JB (2003) Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 152:1–16.CrossRefGoogle Scholar
  131. Pflueger DH, Minder CE (1996) Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers. J Pineal Res 21:91–100.Google Scholar
  132. Phillips JB (2005) Animal magnetoreception: future direction. Abstract. Bioelectromagnetics 26: 160–161.Google Scholar
  133. Phillips JB, Borland SC (1992): Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144.CrossRefGoogle Scholar
  134. Phillips JB, Deutschlander ME (1997) Magnetoreception in terrestrial vertebrates: implications for possible mechanisms of EMF interactions with biological systems. In: Stevens RG, Wilson BW, Anderson LE (eds), The Melatonin Hypothesis. Columbus: Battelle Press, pp.111–172.Google Scholar
  135. Picazo ML, de Miguel MP, Leyton V, Franco P, Varela L, Paniagua R, Bardasano L 1995) Long-term effects of ELF magnetic fields on the mouse testis and serum testosterone levels. Electro-and Magnetobiol 14:127–134.Google Scholar
  136. Podd J, Abbott J, Kazantzis N, Rowland A (2002) Brief exposure to a 50 Hz, 100 micro T magnetic field: effects on reaction time, accuracy, and recognition memory. Bioelectromagnetics 23:189–195.CrossRefGoogle Scholar
  137. Potschka H, Thun-Battersby S, Loescher W (1998) Effect of low-intensity 50-Hz magnetic fields on kindling acquisition and fully kindled seizures in rats. Brain Res 809:269–276.CrossRefGoogle Scholar
  138. Prato FS, Carson JJL, Ossenkopp K-P, Kavaliers M (1995) Possible mechanisms by which extremely low frequency magnetic fields affect opioid function. FASEB J 9:807–814.Google Scholar
  139. Prato FS, Kavaliers M, Thomas AW (2000) Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.CrossRefGoogle Scholar
  140. Preece AW, Wesnes KA, Iwi GR (1998) The effect of a 50 Hz magnetic field on cognitive function in humans. Int J Radiat Biol 74:463–470.CrossRefGoogle Scholar
  141. Raybourn MS (1983) The effect of direct-current magnetic fields on turtle retinas in vitro. Science 220:715–717.CrossRefGoogle Scholar
  142. Reiter RJ, Anderson LE, Buschbom RL, Wilson BW (1988) Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Life Sci 42:2203–2206.CrossRefGoogle Scholar
  143. Reuss S, Olcese J (1986) Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci Lett 64:97–101.CrossRefGoogle Scholar
  144. Rogers WR, Orr LJ, Reiter RJ (1993) 60-Hz electric and magnetic fields and primate melatonin. In: Blank M (ed), Electricity and Magnetism in Biology and Medicine, San Francisco: San Francisco Press, pp 393–397.Google Scholar
  145. Rogers WR, Orr JL, Smith HD (1995a) Nonhuman primates will not respond to turn off strong 60 Hz electric fields. Bioelectromagnetics Suppl 3:48–60.CrossRefGoogle Scholar
  146. Rogers WR, Orr JL, Smith HD (1995b) Initial exposure to 30 kV/m or 60 kV/m electric fields produces temporary cessation of operant behavior of nonhuman primates. Bioelectromagnetics Suppl 3:35–47.CrossRefGoogle Scholar
  147. Rogers WR, Reiter RJ, Smith HD, Barlow-Walden L (1995c) Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduced nocturnal serum melatonin concentration in nonhuman primates. Bioelectromagnetics Suppl 3:119–122.CrossRefGoogle Scholar
  148. Rogers WR, Reiter RJ, Barlow-Walden L, Smith HD (1995d) Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates. Bioelectromagnetics Suppl 3:111–118.CrossRefGoogle Scholar
  149. Rogers WR, Lucas JH, Cory WE, Orr JL, Smith HD (1995e) A 60 Hz electric and magentic field exposure facility for nonhiman primates: design and operational data during experiments. Bioelectromagnetics Suppl 3:2–22.CrossRefGoogle Scholar
  150. Rosen AD (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am J Physiol 262C: 1418–1422.Google Scholar
  151. Sato K, Akiyama T (1984) Kindling method. (Japanese text). In: Yamashita I, Yamauchi T (eds), Experimental Methodology of Central Nervous System. Sapporo: Hokkaido Univ Press, pp. 216–236.Google Scholar
  152. Schmitt O, Tucker R (1978) Human perception of moderate strength low frequency magnetic fields. IEEE Electromag Sympos, 65–70.Google Scholar
  153. Schneider T, Semm P (1992) The biological and possible clinical significance of magnetic influences on the pineal melatonin synthesis. Exp Clin Endocrinol 11:251–258.Google Scholar
  154. Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Cur Biol 13:1290–1298.CrossRefGoogle Scholar
  155. Selmaoui B, Touitou Y (1995) Sinusoidal 50 Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. Life Sci 57:1351–1358.CrossRefGoogle Scholar
  156. Selmaoui B, Touitou Y (1999) Age-related differences in serum melatonin and pineal NAT activity and in the response of rat pineal to a 50-Hz magnetic field. Life Sci 64:2291–2297.CrossRefGoogle Scholar
  157. Selmaoui B, Lambrozo J, Touitou Y (1996) Magnetic fields and pineal function in humans: Evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms. Life Sci 58:1539–1549.CrossRefGoogle Scholar
  158. Selmaoui B, Lambrozo J, Touitou Y (1997) Endocrine functions in young men exposed for one night to a 50-Hz magnetic field. A circadian study of pituitary, thyroid and adrenocortical hormones. Life Sci 61:473–486.CrossRefGoogle Scholar
  159. Semm P, Schneider T, Vollrath L (1980) Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288:607–608.CrossRefGoogle Scholar
  160. Sharrard WJW (1990) A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg [Br] 72-B:347–355.Google Scholar
  161. Shi R, Borgens RB (1994) Embryonic neuroepithelium sodium transport, the resulting physiological potential, and cranial development. Devel Biol 165:105–116.CrossRefGoogle Scholar
  162. Sienkiewicz ZJ, Haylock RGE, Saunders RD (1996) Acute exposure to power-frequency magnetic fields has no effect on the acquisition of a spatial learning task by adult male mice. Bioelectromagnetics 17:180–186.CrossRefGoogle Scholar
  163. Sienkiewicz ZJ, Haylock RGE, Saunders RD (1998a) Deficits in spatial learning after exposure of mice to a 50 Hz magnetic field. Bioelectromagnetics 19:79–84.CrossRefGoogle Scholar
  164. Sienkiewicz ZJ, Haylock RGE, Bartrum R, Saunders RD (1998b) 50 Hz magnetic field effects on the performance of a spatial learning task by mice. Bioelectromagnetics 19:486–493.CrossRefGoogle Scholar
  165. Sisken BF, Kanje M, Lundborg G, Kurtz W (1990) Pulsed electromagnetic fields stimulate nerve regeneration in vitro and in vivo. Res Neurol Neurosci 1:303–309.Google Scholar
  166. Sisken BF, Walker J, Orgel M (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem 52:404–409.CrossRefGoogle Scholar
  167. Song B, Zao M, Forrester J, McCaig C (2004) Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. J Cell Sci 117: 4681–4690CrossRefGoogle Scholar
  168. Stehle J, Reuss S, Schroder H, Henschel M, Vollrath L (1988) Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil-role of pigmentation and sex. Physiol Behav 44:91–94.CrossRefGoogle Scholar
  169. Takano-Yamamoto T, Kawakami M, Sakuda M (1992) Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res 71:1920–1925.Google Scholar
  170. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535:261–267.CrossRefGoogle Scholar
  171. Thun-Battersby S, Westermann J, Loescher W (1999) Lymphocyte subset analyses in blood, spleen and lymph nodes of female Sprague-Dawley rats after short or prolonged exposure to a 50 Hz 100 µT magnetic field. Radiat Res 152:436–443.CrossRefGoogle Scholar
  172. Tokimura H, Di Lazzaro V, Tokimura Y, et al. (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513.CrossRefGoogle Scholar
  173. Touitou Y (1989) Pineal and hypothalamo-pituitary-adrenal axis: in search for interaction. In: Reiter RJ and Pang SF (eds), Advances in Pineal Research. London: J Libbey 3:241–246.Google Scholar
  174. Touitou Y, Lambrozo J, Camus F, Charbuy H (2003) Magnetic fields and the melatonin hypothesis: a study of workers chronically exposed to 50-Hz magnetic fields. Amer J Physiol Regul Integr Comp Physiol 284:R1529–R1535.Google Scholar
  175. Tremblay L, Houde M, Mercier G, Gagnon J, Mandeville R (1996) Differential modulation of natural and adaptive immunity in Fischer rats exposed for 6 weeks to 60 Hz linear sinusoidal continuous-wave magnetic fields. Bioelectromagnetics 17:373–383.CrossRefGoogle Scholar
  176. Trimmel M, Schweiger E (1998) Effects of ELF (50 Hz, 1 mT) electromagnetic field (EMF) on concentration in visual attention, perception and memory including effects of EMF sensitivity. Toxicol Let 96/97:377–382.CrossRefGoogle Scholar
  177. Trinder J, Armstrong SM, O’Brien C, Luke D, Martin MJ (1996) Inhibition of melatonin secretion onset by low levels of illumination. J Sleep Res 5:77–82.CrossRefGoogle Scholar
  178. Truoung H, Yellon SM (1997) Effect of various acute 60 Hz magnetic field exposures on the nocturnal melatonin rise in the adult Djungarian hamster. J Pineal Res 22:177–183.Google Scholar
  179. Ueno S, Tashiro T, Harada K (1988) Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J Appl Phys 64:5862–5864.CrossRefGoogle Scholar
  180. Ueno S, Matsuda T, Fujiki M (1990) Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain. IEEE Trans Magn 26:1539–1544.CrossRefGoogle Scholar
  181. Wada JA, Sato M (1974) Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats: Correlative electrographic and behavioral features. Neurol 24:565–574.Google Scholar
  182. Wada JA (1976) Kindling. New York: Raven Press.Google Scholar
  183. Walker JL, Evans JM, Resig P, Guarnieri S, Meade P, Sisken BF (1994) Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp Neurol 125:302–305.CrossRefGoogle Scholar
  184. Warman GR, Tripp H, Warman VL, Arendt J (2003) Acute exposure to circularly polarized 50-Hz magnetic field of 200–300 microT does not affect the pattern of melatonin secretion in young men. J Clin Endocrinol Metab 88:5668–5673.CrossRefGoogle Scholar
  185. Weitlauf HM (1994) In: Knobil E and Neill JD (eds), The Physiology of Reproduction, 2nd ed. New York: Raven Press, pp. 391–440.Google Scholar
  186. Welker HA, Semm P, Willing RP, Commentz JC, Wiltschko W, Vollrath L (1983) Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exptl Brain Res 50:426–432.Google Scholar
  187. Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Amer J Epidemiol 109:273–284.Google Scholar
  188. Wilson BW, Anderson LE, Hilton DI, Phillips RD (1981) Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2:371–380.CrossRefGoogle Scholar
  189. Wilson BW, Chess EK, Anderson LE (1986) 60 Hz electrical field effects on pineal melatonin rhythms: Time course of onset and recovery. Bioelectromagnetics 7:239–242.CrossRefGoogle Scholar
  190. Wilson BW, Matt KS, Morris JE, Sasser LB, Miller DL, Anderson LE (1999) Effects of 60 Hz magnetic field exposure on the pineal and hypothalamic-pituitary-gonadal axis in the Siberian hamster (Phodopus sungorus). Bioelectromagnetics 20:224–232.CrossRefGoogle Scholar
  191. Wood AW, Armstrong SM, Sait ML, Devine L, Martin MJ (1998) Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J Pineal Res 25:116–127.Google Scholar
  192. Yasuda I (1954) Piezoelectric activity of bone. J Jap Orthoped Surg Soc 28:267–269.Google Scholar
  193. Yasui M(1994) Magnetic Fields Under Transmission Line(Japanese text). Power Engineering R & D Center, Tokyo Electric Power Co.Google Scholar
  194. Yellon SM(1994) Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster. J Pineal Res 16:136–144.Google Scholar
  195. Yellon SM (1996) 60-Hz magnetic field exposure effects on the melatonin rhythm and photoperiod control of reproduction. Amer J Physiol 270:E816–E821.Google Scholar
  196. Zecca L, Mantegazza C, Maronato V, Cerretelli P, Canatti M, Piva F, Dondi D, Hagino N(1998) Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III 50 Hz electromagnetic fields. Bioelectromagnetics 19: 57–66CrossRefGoogle Scholar
  197. Zhao M, Forester JV, McCaig CD (1999) A small physiological electric field orients cell division. Proc Natl Acad Sci USA 96: 4942–4946CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Masamichi Kato
    • 1
  1. 1.Hokkaido UniversitySapporoJapan

Personalised recommendations