Endpoints and Methodologies

  • Osamu Fujiwara
  • Jianqing Wang
  • Masamichi Kato
  • Junji Miyakoshi


Chromosomal Aberration Comet Assay Pineal Gland Gamma Amino Butyric Acid Gamma Amino Butyric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.4 References

  1. Baddeley AD (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4: 417–423CrossRefGoogle Scholar
  2. Bartsch H, Bartsch C, Mecke D, Lippert TH (1994) Seasonality of pineal melatonin production in rat-possible synchronization by the geomagnetic field. Chronobiol Int 11: 21–26.Google Scholar
  3. Berger H (1929) Ueber das Elektroenkephalogramm des Menschen. I. Mitteilung. Arch f Psychiat 87: 527–570CrossRefGoogle Scholar
  4. Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28: 193–202.CrossRefGoogle Scholar
  5. Costall B, Naylor RJ (1973) The role of telencephalic dopaminergic systems in the mediation of apomorphine-stereotyped behavior. Eur J Pharmacol 24: 8–24.CrossRefGoogle Scholar
  6. Ebadi M, Govitrapong P, Phansuwan-Pujito P, Nelson, F, Reiter RJ (1998) Pineal opioid receptors and analgesic action of melatonin. J Pineal Res 24: 193–200.Google Scholar
  7. Ekman AC, tLeppaeluoto J, Huttumen P, et al. (1993) Ethanol inhibits melatonin secretion in healthy volunteers in a dose-dependent, randomized, double-blind cross-over study. J Clin Endocrinol Metab 77: 780–783.CrossRefGoogle Scholar
  8. Golombek DA, Escolar E, Burin LJ, De Brito-Sanchez MG, Cardinali DP (1991) Timedependent melatonin analgesia in mice; inhibition by opiate or benzodiazepine antagonism. Eur J Pharmacol 194: 25–30.CrossRefGoogle Scholar
  9. Graham C, Cook MR, Kavet R, Satre A, Smith DK (1998) Prediction of nocturnal plasma melatonin from morning urinary measures. J Pineal Res 24: 230–238Google Scholar
  10. Henke K, Weber B, Kneifel S, Wieser HG, Buck A (1999) Human hippocampus associates information in memory. Proc Natl Acad Sci USA, 96: 5884–5889.CrossRefGoogle Scholar
  11. Henshaw DL, Reiter RJ (2005) Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption? Bioelectromagnetics Suppl 7: 1–12Google Scholar
  12. Hirose H, Nakahara T, Zhang Q.-M., Yonei S, Miyakoshi J (2003) Static magnetic field with a strong magnetic field gradient (41.7 T/M) induces c-jun expression in HL-60 Cells. In Vitro Developl Biology Animal 39:348–352.CrossRefGoogle Scholar
  13. Hrushesky WJM (2001) Melatonin cancer therapy. In Bartsch C et al. (eds), The Pineal Gland and Cancer. Neuroimmunoendocrine Mechanisms in Malignancy, Berlin: Springer-Verlag, 476–508.Google Scholar
  14. Kado M, Yoshida A, Hira Y, Sakai Y, Matsushima S (1999) Light and electron microscopic immunocytochemical study on the innervation of the pineal gland of the tree shrew (Tupaia glis), with special reference to peptidergic synaptic junctions with pinealocytes. Brain Res 842: 359–375.CrossRefGoogle Scholar
  15. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science. 4th ed. Pp. 1247–1279. New York: McGraw Hill.Google Scholar
  16. Kato M(1999) Research on nervous and endocrine systems, In Takebe H, Shiga T, Kato M, Masada E(eds), Effects of electromagnetic fields Tokyo, Bunkodo Publ. Ltd, 44–65Google Scholar
  17. Koyama S, Isozumi Y, Suzuki Y, Taki M, Miyakoshi J (2004) Effects of 2.45 GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells. Scientific World J 4:29–40.Google Scholar
  18. Koyama S, Nakahara T, Wake K, Taki M, Isozumi Y, Miyakoshi J (2003) Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat Res 541:81–89.Google Scholar
  19. Lambrozo J, Touitou Y, Dab W (1996) Exploring the EMF melatonin connection. A review of the possible effects of 50/60 Hz electric and magnetic fields on melatonin secretion. Int J Occup Environ Med 2: 37–47.Google Scholar
  20. Langer M, Hartmann T, Waldhauser F (1997) Melatonin beim Menschen.Ein Ueberblick. Wiener Klin Wochenschr 109: 707–713.Google Scholar
  21. Liebermann PM, Woelfler A, Shauenstein K (2001) Melatonin and immune functions. In Bartsch C et al. (eds), The Pineal Gland and Cancer. Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer-Verlag, 371–383.Google Scholar
  22. Liu P, Bilkey DK (1998) Perirhinal cortex contributions to performance in the Morris water maze. Behav Neurosci 112: 304–315.CrossRefGoogle Scholar
  23. Loövsund P, Nilsson SEG, Oeberg PA (1981) Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity. Med Biol Eng Comput, 19: 679–685.CrossRefGoogle Scholar
  24. Maestroni GJM (1993) The immuno-neuroendocrine role of melatonin. J Pineal Res 14: 1–10.Google Scholar
  25. Maestroni GJM, Conti A (1990) The pineal neurohormone melatonin stimulates activated CD4+,Thy-1+ cells to release opioid agonist(s) with immunoenhancing and antistress properties. J Neuroimmunol 28: 167–176.CrossRefGoogle Scholar
  26. Maguire EA, Frackowiak RS, Frith CD (1996) Learning to find your way: a role for the human hippocampal formation. Proc. Roy Soc Lond B Biol Sci 263: 1745–1750.CrossRefGoogle Scholar
  27. Matsushima S, Sakai Y, Hira Y (1999) Peptidergic peripheral nervous systems in the mammalian pineal gland. Microscopy Res Technique 46: 265–280.CrossRefGoogle Scholar
  28. Miyakoshi J, Kitagawa K, Takebe H (1997) Mutation induction by high-density 50 Hz magnetic fields in human MeWo cells exposed in the DNA synthesizing phase. Intern J Radiation Biology 7: 75–79.CrossRefGoogle Scholar
  29. Miyakoshi J, Koji T, Wakasa T, Takebe H (1999) Long term exposure to a magnetic field (5 mT at 60 Hz) increases X-ray-induced mutations. J Radiat.Res 40:13–21.CrossRefGoogle Scholar
  30. Miyakoshi J, Mori Y, Yaguchi H, Ding G-R, Fujimori A (2000b) Suppression of heat-induced HSP-70 by simultaneous exposure to 50 mT magnetic field. Life Sci 66:1187–1196.CrossRefGoogle Scholar
  31. Miyakoshi J, Ohtsu S, Tatsumi-Miyajima J, Takebe H (1994) A newly designed experimental system for exposure of mammalian cells to extremely low frequency magnetic fields. J Radiat Res 35:26–34.CrossRefGoogle Scholar
  32. Miyakoshi J, Takemasa K, Takashima Y, Ding G-R, Hirose H, Koyama S (2005) Effects of exposure to a 1950 MHz radio-frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26:251–257.CrossRefGoogle Scholar
  33. Miyakoshi J, Yoshida M, Shibuya K, Hiraoka M(2000a) Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J Radiat Res 41:293–302.CrossRefGoogle Scholar
  34. Miyakoshi J, Yoshida M, Tarusawa Y, Nojima T, Wake K, Taki M (2002) Effects of highfrequency electromagnetic fields on DNA strand breaks using comet assay method. Electric Engineer Japan 141:9–15.CrossRefGoogle Scholar
  35. Miyakoshi J, Yoshida M, Yaguchi H, Ding G-R (2000c) Exposure to extremely low frequency magnetic fields suppresses X-ray-induced transformation in mouse C3H10T1/2 cells. Biochem Biophysl Res Commun 271:323–327.CrossRefGoogle Scholar
  36. Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J (2002) Effects of exposure of CHO-K1 cells to a 10 T static magnetic field. Radiology 224:817–822.Google Scholar
  37. Nakatani M, Ohara Y, Katagiri S, Nakano K. (1940) Studien ueber die zirbellosen wieblichen weissen Ratten. (Original in Japanese.) Nippon Byori Gakkai Kaishi, 30: 232–236.Google Scholar
  38. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: Preliminary evidence from the unit activity in the freely-moving rat. Brain Res 34:171–175CrossRefGoogle Scholar
  39. Olton DS (1977) The function of septo-hippocampal connections in spatially organized behaviour. Ciba Found Symp 58: 327–349Google Scholar
  40. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: Genetic, cellular physiology and subcortical networks. Nat Rev Neurosci 3: 591–605Google Scholar
  41. Panzer A, Viljoen M (1997) Validity of melatonin as an oncostatic agent. J Pineal Res 22: 184–202.Google Scholar
  42. Reiter RJ, Tang L, Garcia JJ, Munoz-Hoyos A (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60: 2255–2271.CrossRefGoogle Scholar
  43. Sakai Y, Hira Y, Matsushima S (2000) Central GABAergic innervation of the mammalian pineal gland: A light and electron microscopic immunocytochemical investigation in rodent and nonrodent species. J Comp Neurol 430: 72–84.CrossRefGoogle Scholar
  44. Schmidt RF, Thews G (1989) Human Physiology, 2nd ed, p. 362. Berlin: Springer-Verlag.Google Scholar
  45. Shah PN, Mhatre MC, Kothari LS (1984) Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 44: 3403–3407.Google Scholar
  46. Shavali S, Ho B, Govitrapong P, Sawlom S, Ajjimaporn A, Klongpanichapak S, Ebadi M (2005) Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull 64: 471–479.CrossRefGoogle Scholar
  47. Stevens RG (1987) Electric power use and breast cancer: A hypothesis. Amer J Epidemiol 125: 556–561.Google Scholar
  48. Stolk JM, Rech RH (1970) Antagonism of d-amphetamine by alpha-methyl-L-tyrosine: Behavioral evidence for the participation of catecholamine stores and synthesis in the amphetamine stimulant response. Neuropharmacol 9: 249–264.CrossRefGoogle Scholar
  49. Szamel M, Resch K (1995) T-cell antigen receptor-induced signal-transduction pathways. Activation and function of protein kinase C in T lymphocytes. Eur J Biochem 228: 1–15.CrossRefGoogle Scholar
  50. Tan DX, Manchester LC, Reiter RJ, Qi WB, Zhang M, Weintraub ST, Cabrera J, Sainz RM, Mayo JC (1999) Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta 1472: 206–214.Google Scholar
  51. Tian F-R, Nakahara T, Wake K, Taki M, Miyakoshi J (2002) Exposure to 2.45GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg, but not at a lower SAR of 5W/kg, in human glioma MO54 cells. Intern J Radiation Biology 78: 433–440CrossRefGoogle Scholar
  52. Yaguchi H, Yoshida M, Ding G-R, Shingu K, Miyakoshi J (2000) Increased chromatid-type chromosomal aberrations in mouse m5S cells exposed to power-line frequency magnetic fields. Intern J Radiat Biol 76:1677–1684.CrossRefGoogle Scholar
  53. Yaguchi H, Yoshida M, Ejima Y, Miyakoshi J (1999) Effect of high-density extremely low frequency magnetic field on sister chromatid exchanges in mouse m5S cells. Mutat Res 440:189–194.Google Scholar
  54. Young IM, Leone RM, Francis P, Stovell P, Silman RE (1985) Melatonin is metabolized to N-acetylserotonin and 6-hydroxymelatonin in man. J Clin Endocrinol Metab 60, 114–119Google Scholar
  55. Vollrath L (2001) Biology of the pineal gland and melatonin in humans. In: Bartsch C et al. (eds), The Pineal Gland and Cancer. Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer-Verlag, 5–49.Google Scholar
  56. Waldhauser F, Weiszenbacher G, Tatzer E, Gisinger B, Waldhauser M, Schemper M, Frische H (1988) Alterations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metabolism 66: 648–652.CrossRefGoogle Scholar
  57. Wurtman R, Zhdanova I (1995) Improvement of sleep quality by melatonin. Lancet 346: 1491.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Osamu Fujiwara
    • 1
  • Jianqing Wang
    • 1
  • Masamichi Kato
    • 2
  • Junji Miyakoshi
    • 3
  1. 1.Nagoya Institute of TechnologyNagoyaJapan
  2. 2.Hokkaido UniversitySapporoJapan
  3. 3.Hirosaki UniversityHirosakiJapan

Personalised recommendations