Radiofrequency Biology: In vitro

  • Junji Miyakoshi


Chromosomal Aberration Comet Assay Code Division Multiple Access Sister Chromatid Exchange Combine Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11.6 References

  1. Balcer-Kubiczek EK, Harrison GH (1985) Evidence for microwave carcinogenesis in vitro. Carcinogenesis 6:859–864.CrossRefGoogle Scholar
  2. Balcer-Kubiczek EK, Harrison GH (1991) Neoplastic transformation of C3H/10T1/2 cells following exposure to 120Hz modulated 2.45 GHz microwaves and phorbol ester tumor promoter. Radiat Res 126:65–72.CrossRefGoogle Scholar
  3. Balcer-Kubiczek EK, Harrison GH (1989) Induction of neoplastic transformation in C3H/10T1/2 cells by 2.45 GHz microwaves and phorbol ester. Radiat Res 117:531–537.CrossRefGoogle Scholar
  4. Bisht KS, Moros EG, Straube WL, Baty JD, Roti Roti JL (2002) The effect of 835.62 MHz FDMA or 847.74 MHz CDMA modulated radiofrequency radiation on the induction of micronuclei in C3H 10T(1/2) cells. Radiat Res 157:506–515.CrossRefGoogle Scholar
  5. Cain CD, Thomas DL, Adey WR (1997) Focus formation of C3H/10T1/2 cells and exposure to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics 18:237–243.CrossRefGoogle Scholar
  6. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schonborn F, Schudere J, Kuster N, Wobus AM (2004) High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 25:296–307.CrossRefGoogle Scholar
  7. Garaj-Vrhovac V, Fucic A, Horvat D (1992) The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat Res 281:181–186.CrossRefGoogle Scholar
  8. Garaj-Vrhovac V, Horvat D, Koren Z (1991) The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res 263:143–149.CrossRefGoogle Scholar
  9. Goswami PC, Albee LE, Parsian AJ, Baty JD, Moros EG, Pickard WF, Roti Roti JL, Hunt CR (1999) Proto-oncogene mRNA level and activities of multiple transcription factor in C3H10T1/2 murine embryonic fibroblasts exposed to 835.62 and 847.74 MHz cellular phone communication frequency radiation. Radiat Res 151:300–309.CrossRefGoogle Scholar
  10. Ivaschuk OI, Jones RA, Ishida-Jones T, Haggren W, Adey WR, Phillips JL (1997) Exposure of nerve growth factor-treated pc12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression. Bioelectromagnetics 18:223–229.CrossRefGoogle Scholar
  11. Kerbacher JJ, Meltz ML, Erwin DN (1990) Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. Radiat Res 123:311–319.CrossRefGoogle Scholar
  12. Koyama S, Isozumi Y, Suzuki Y, Taki M, Miyakoshi J (2004) Effects of 2.45 GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells. The Scientific World J 4:29–40.Google Scholar
  13. Koyama S, Nakahara T, Wake K, Taki M, Isozumi Y, Miyakoshi J (2003) Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat Res 541:81–89.Google Scholar
  14. Lagroye I, Hook GJ, Wettring BA, Baty JD, Moro EG, Straube WL, Roti Roti JL (2001) Measurements of alkali-labile DNA damage and protein-DNA crosslinks after 2450MHz microwave and low-dose gamma irradiation in vitro. Radiat Res 161:201–214.CrossRefGoogle Scholar
  15. Lagroye I, Anane R, Wettring BA, Moros EG, Straube WL, Laregina M, Niehoff M, Pickards WF, Baty J, Roti Roti JL (2004) Measurement of DNA damage after acute exposure to pulsed-wave 2450 MHz microwaves in rat brain cells by two alkaline comet assay methods. Int J Radiat Biol 80:11–20.CrossRefGoogle Scholar
  16. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R (2002) Non-thermal activation of the hsp27/p38MARK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer-and blood-brain barrier-related effects. Differentiation 70:120–129.CrossRefGoogle Scholar
  17. McNamee JP, Bellier PV, Gajda GB, Miller SM, Lemay EP, Lavallee BF, Marror L, Thansandote A (2002a) DNA damage and micronucleus induction in human leukocytes after acute in vitro exposure to a 1.9 GHz continuous-wave radiofrequency field. Radiat Res 158:523–533.CrossRefGoogle Scholar
  18. McNamee JP, Bellier PV, Gajda GB, Lavallee BF, Lemay EP, Marror L, Thansandote A (2002b) DNA damage in human leukocytes after acute in vitro exposure to a 1.9 GHz pulse-modulated radiofrequency field. Radiat Res 158:534–537.CrossRefGoogle Scholar
  19. Maes A, Collier M, Van-Gorp U, Vandoninck S, Verschaeve L (1997) Cytogenetic effects of 935.2 MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res 393:151–156.Google Scholar
  20. Maes A, Verschaeve L, Arroyo A, De Wagter C, Vercruyssen L (1993) In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics 14:495–501.CrossRefGoogle Scholar
  21. Maes A, Collier M, Slaets D, Verschaeve L (1996) 954 MHz microwaves enhance the mutagenic properties of mitomycin c. Environ Molecul Mutagen 28:26–30.CrossRefGoogle Scholar
  22. Maes A, Collier M, Verschaeve L (2001) Cytogenetic effects of 900 MHz (GSM) microwaves on human lymphocytes. Bioelectromagnetics 22:91–96.CrossRefGoogle Scholar
  23. Malyapa RS, Ahern EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL (1997a)Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74 MHz). Radiat Res 148:618–627.CrossRefGoogle Scholar
  24. Malyapa RS, Ahern EW, Straube WL, Moros FG, Pickard WF, Roti Roti JL (1997b) Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation. Radiat Res 148:608–617.CrossRefGoogle Scholar
  25. Mashevich M, Folkman D, Kesar A, Barbul A, Korenstein R, Jerby E, Avivl L (2003) Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24:82–90.CrossRefGoogle Scholar
  26. Mei-Bian Z, Ji-Liang H, Li-Fen J, De-qiang L (2002) Study of low-intensity 2450 MHz microwave exposure enhancing the genotoxic effects of mitomycin c using micronucleus test and comet assay in vitro. Biomed Environ Sci 15:283–290.Google Scholar
  27. Meltz ML, Eagan P, Erwin DN (1990) Proflavin and microwave radiation: absence of a mutagenic interaction. Bioelectromagnetics 11:149–157.CrossRefGoogle Scholar
  28. Miyakoshi J, Yoshida M, Tarusawa Y, Nojima T, Wake K, Taki M (2001) Effects of highfrequency electromagnetic fields on DNA strand breaks using comet assay method. Elect Engineer 141:9–15.CrossRefGoogle Scholar
  29. Miyakoshi J, Takemasa K, Takashima Y, Ding G-R, Hirose H, Koyama S (2005) Effects of exposure to a 1950 MHz radio-frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26:251–257.CrossRefGoogle Scholar
  30. Phillips JL, Ivaschuk O, Shida-Jones TI, Jones RA, Campbell-Beachler M, Haggren W(1998) DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem Bioenerg 45:103–110.CrossRefGoogle Scholar
  31. Roti Roti JL, Malyapa RS, Bisht KS, Ahern EW, Moros EG, Pickard WF, Straube WL (2001) Neoplastic transformation in C3H 10T1/2 cells after exposure to 835.62MHz FDMA and 847.74 MHz CDMA radiations. Radiat Res 155:239–247.CrossRefGoogle Scholar
  32. Sagripanti JL, Swicord ML (1986) Rapid communication: DNA structural changes caused by microwave radiation. Int J Radiat Biol 50:47–50.Google Scholar
  33. Stodolnik-Baranska W (1967) Lymphoblastoid transformation of oymphocytes in vitro after microwave irradiation. Nature 214:102–103.CrossRefGoogle Scholar
  34. Tian F, Nakahara T, Wake K, Taki M, Miyakoshi J (2002) Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20W/kg but not at 5W/kg in human glioma MO54 cells. Int J Radiat Biol 78:433–440.CrossRefGoogle Scholar
  35. Tice RR, Hook GG, Donner M, McRee DI, Guy AW (2002) Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 23:113–126.CrossRefGoogle Scholar
  36. Vijayalaxmi, Mohan N, Meltz ML, Wittler MA (1997) Proliferation and cytogenetic studies in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Int J Radiat Biol 72:751–757.CrossRefGoogle Scholar
  37. Vijayalaxmi, Pickard WF, Bisht KS, Leal BZ, Meltz ML, Roti Roti JL, Straube WL, Moros EG (2001a) Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA). Radiat Res 155:113–121.CrossRefGoogle Scholar
  38. Vijayalaxmi, Bisht KS, Pickard WF, Meltz ML, Roti Roti JL, Moros EG (2001b) Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847.74 MHz, CDMA). Radiat Res 156:430–432.CrossRefGoogle Scholar
  39. Zeni O, Romano M, Perrotta A, Lioi MB, Barbieri R, d’Ambrosio G, Massa R, Scarfi MR (2005) Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields. Bioelectromagnetics 26:258–265.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Junji Miyakoshi
    • 1
  1. 1.Hirosaki UniversityHirosakiJapan

Personalised recommendations