Sika Deer pp 43-59 | Cite as

Evolutionary Significance of Admixture and Fragmentation of Sika Deer Populations in Japan

  • Hidetoshi B. Tamate

The sika deer is genetically very close to the red deer (Cervus elaphus): nucleotide divergences between the two species are less than 1% in most of the protein-coding sequences. Genetic markers that were developed for red deer and other cervine, ovine, and bovine species are readily applicable to genetic analyses of sika deer. By using such DNA markers, I and my colleagues studied the level of genetic diversity of local populations, past demographic changes of populations, and spatial structures of populations. A phylogenetic tree constructed from micro satellite allele frequencies separates “northern” and “southern” groups in different clusters, showing a similar split pattern between the two lineages as observed in the mtDNA-based phylogenetic tree. However, the level of differentiation between the northern and southern mtDNA groups is lower than that among the populations in Honshu, which suggest that the genetic difference between the two groups has been reduced by the admixture. The genetic differentiation among populations was caused by a loss of genetic variation during past fragmentation of populations and not by the accumulation of novel mutations in each population. Two cases of the fragmentation of sika deer populations at a local scale, which were revealed by DNA analyses, are described in this chapter. Population genetic studies thus provide empirical data for monitoring and predicting long-term changes in demog raphy and population structure of sika deer.


Major Histocompatibility Complex Gene Flow Sika Deer Cervus Elaphus Recent Molecular Phylogenetic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abernethy, K. 1994. The establishment of a hybrid zone between red and sika deer (genus Cervus). Molecular Ecology 3:551–562PubMedCrossRefGoogle Scholar
  2. Asher, G. W., D. S. Gallagher, M. L. Tate, and C. Tedford. 1999. Hybridization between sika deer (Cervus nippon) and axis deer (Axis axis). Journal of Heredity 90:236–240PubMedCrossRefGoogle Scholar
  3. Blakiston, T. W. 1883. Zoological indications of ancient connection of the Japan islands with the continent. Transactions of the Asiatic Society of Japan 11:126–140Google Scholar
  4. Chikuni, K., T. Tabata, M. Monma, and M. Saito. 1994. Direct sequencing of the promoter region of growth hormone gene from Artiodactyla. Journal of Animal Science and Technology 65:120–124Google Scholar
  5. Cook, C. E., Y. Wang, and G. Sensabaugh. 1999. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Molecular Phylogenetics and Evolution 12:47–56PubMedCrossRefGoogle Scholar
  6. Cornuet, J.-M., and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  7. Cronin, M. A., R. Stuart, B. J. Pierson, and J. C. Patton. 1996. K-casein gene phylogeny of higher ruminants (Pecora, Artiodactyla). Molecular Phylogenetics and Evolution 6:295–311PubMedCrossRefGoogle Scholar
  8. Dong, W. 1993. A morphological analysis of cheek teeth of Eurasian Pliocene cervids. Pages 65–72 in N. Ohtaishi, and H. L. Sheng, editors, Deer of China. Elsevier Science, Amsterdam, the NetherlandsGoogle Scholar
  9. Garza, J. C., and E. G. Williamson. 2001. Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10:305–318PubMedCrossRefGoogle Scholar
  10. Gilbert, C., A. Ropiquet, and A. Hassanin. 2006. Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution 40:101–117PubMedCrossRefGoogle Scholar
  11. Goodman, S. J., N. H. Barton, G. Swanson, K. Abernethy, and J. M. Pemberton. 1999. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152:355–371PubMedGoogle Scholar
  12. Goodman, S. J, H. B. Tamate, R. Wilson, J. Nagata, S. Tatsuzawa, G. M. Swanson, J. M. Pemberton, and D. R. McCullough. 2001. Bottlenecks, drift and differentiation: The population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Molecular Ecology 10:1357–1370PubMedCrossRefGoogle Scholar
  13. Harrington, R. 1985. Evolution and distribution of the Cervidae. Pages 3–11 in P. F. Fennessy and K. R. Drew, editors, Biology of deer reproduction. Bulletin 22 of the Royal Society of New Zealand, Wellington, New ZealandGoogle Scholar
  14. Imaizumi, Y. 1970. Description of a new species of Cervus from the Tsushima Island, Japan, with a revision of the subgenus Sika based on clinal analysis. Bulletin of the Natural Science Museum, Tokyo 13:185–194Google Scholar
  15. Kuroda, N., and Y. Okada. 1950. On two new races of Cervus nippon from the southern islands of Kyushu, Japan. Annotationes Zoologicae Japonenses 24:59–64Google Scholar
  16. Kuwayama, R., and T. Ozawa. 2000. Phylogenetic relationships among European red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 15:115–123PubMedCrossRefGoogle Scholar
  17. Li, M., H. B. Tamate, F. W. Wei, X. Wang, R. Masuda, H. L. Sheng, and N. Ohtaishi. 2003. Phylogenetic relationships among deer in China derived from mitochondrial DNA cytochrome b sequences. Acta Theriologica 48:207–219Google Scholar
  18. Lister, A. M. 1984. Evolutionary and ecological origins of British deer. Proceedings of the Royal Society of Edinburgh 82b:205–229Google Scholar
  19. Loftus, R. T., D. E. MacHugh, D. G. Bradley, P. M. Sharp, and P. Cunningham. 1994. Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences of the United States of America 91:2757–2761PubMedCrossRefGoogle Scholar
  20. Lowe, V. P. W., and A. S. Gardiner. 1975. Hybridization between red deer (Cervus elaphus) and sika deer (Cervus nippon) with particular reference to stocks in N. W. England. Journal of Zoology 177:553–566CrossRefGoogle Scholar
  21. Mahmut, H., R. Masuda, M. Onuma, M. Takahashi. J. Nagata, M. Suzuki, and N. Ohtaishi. 2002. Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China: Comparison with other Asian, European, and North American populations. Zoological Science 19:485–495PubMedCrossRefGoogle Scholar
  22. Matsumoto, M., H. Nishinakagawa, and J. Otsuka. 1984. Morphometrical study on the skull of Cervus pulchellus, Cervus nippon mageshimae and Cervus nippon yakushimae. Journal of the Mammalogy Society of Japan 10:41–53Google Scholar
  23. McCullough, D. R., J. K. Fischer, and J. D. Ballou. 1996. From bottleneck to metapopulation: Recovery of the tule elk in California. Pages 375–403 in D. R. McCullough, editor, Metapopulations and Wildlife Conservation. Island Press, Washington, DC, USAGoogle Scholar
  24. Nabata, D., R. Masuda, O. Takahashi, and J. Nagata. 2004. Bottleneck effects on the sika deer Cervus nippon population in Hokkaido, revealed by ancient DNA analysis. Zoological Science 21:473–481PubMedCrossRefGoogle Scholar
  25. Nagata, J., R. Masuda, K. Kaji, M. Kaneko, and M. C. Yoshida. 1998. Genetic variation and popu lation structure of the Japanese sika deer (Cervus nippon) in Hokkaido Island, based on mito chondrial D-loop sequences. Molecular Ecology 7:871–877PubMedCrossRefGoogle Scholar
  26. Nagata, J., R. Masuda, H. B. Tamate, S. Hamasaki, K. Ochiai, M. Asada, S. Tatsuzawa, K. Suda, H. Tado, and Y. C. Yoshida. 1999. Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: Comparison of mitochondrial D-loop region sequences. Molecular Phylogenetics and Evolution 13:511–519PubMedCrossRefGoogle Scholar
  27. Ohmura, Y., Y. Fukumoto, and K. Ohtaki. 1983. Chromosome polymorphism in Japanese sika, Cervus (Sika) nippon. Japan Journal of Veterinary Science 45:23–30Google Scholar
  28. Ohtaishi, N., and Y. Gao. 1990. A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in China. Mammalian Review 20:125–144CrossRefGoogle Scholar
  29. Okada, A., and H. B. Tamate. 2000. Pedigree analysis of the sika deer (Cervus nippon) using microsatellite markers. Zoological Science 17:335–340PubMedGoogle Scholar
  30. Okada, A., H. B. Tamate, M. Minami, N. Ohnishi, and S. Takatsuki. 2005. Use of microsatellite markers to assess the spatial genetic structure of a population of sika deer Cervus nippon on Kinkazan Island, Japan. Acta Theriologica 50:227–240Google Scholar
  31. Page, R. D. M., and E. C. Holmes. 1998. Molecular evolution: A phylogenetic approach. Blackwell Science, Oxford, United KingdomGoogle Scholar
  32. Pitra, C., J. Fickel, E. Meijaard, and P. C. Groves. 2004. Evolution and phylogeny of old world deer. Molecular Phylogenetics and Evolution 33:880–895PubMedCrossRefGoogle Scholar
  33. Polziehn, R. O., and C. Strobeck. 1998. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Molecular Phylogenetics and Evolution 10:249–258PubMedCrossRefGoogle Scholar
  34. Slate, J., C. W. Coltman, S. J. Goodman, I. MacLean, J. M. Pemberton, and J. L. Williams. 1998. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Animal Genetics 29:307–15PubMedCrossRefGoogle Scholar
  35. Slate, J., T. C. Van Stijin, R. M. Anderson, K. M. McEwan, N. J. Maqbool, H. C. Mathias, M. J. Bixley, D. R. Stevens, A. J. Molenaar, J. E. Beever, S. M. Galloway, and M. L. Tate. 2002. A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597PubMedGoogle Scholar
  36. Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  37. Stoneking, M., S. T. Sherry, A. J. Redd, and L. Vigilant. 1992. New approaches to dating suggest a recent age for the human mtDNA ancestor. Philosophical Transactions of the Royal Society B 337:34–37Google Scholar
  38. Takahashi, M., R. Masuda, H. Uno, M. Yokoyama, M. Suzuki, M. C. Yoshida, and N. Ohtaishi. 1998. Sexing carcass remains of the sika deer (Cervus nippon) using PCR amplification of the Sry gene. Journal of Veterinary Medical Science 60:713–716PubMedCrossRefGoogle Scholar
  39. Tamate, H. B., S. Tatsuzawa, T. Suda, M. Izawa, T. Doi, K. Sunagawa, F. Miyahira, and H. Tado. 1998. Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. Journal of Mammalogy 79:1396–1403CrossRefGoogle Scholar
  40. Tamate, H. B., A. Okada, M. Minami, N. Ohnishi, H. Higuchi, and S. Takatsuki. 2000. Genetic variations revealed by microsatellite markers in a small population of the sika deer (Cervus nippon) on Kinkazan Island, northern Japan. Zoological Science 17:47–53PubMedCrossRefGoogle Scholar
  41. Tate, M. L., G. J. Goosen, H. Patene, A. J. Pearse, K. M. McEwan, and P. F. Fennessy. 1997. Genetic analysis of Pere-David x red deer interspecies hybrids. Journal of Heredity 88:361–365PubMedGoogle Scholar
  42. Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the Analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  43. Wu, H., Q. H. Wan, and S. G. Fang. 2004. Two genetically distinct units of the Chinese sika deer (Cervus nippon): Analyses of mitochondrial DNA variation. Biological Conservation 119:183–190CrossRefGoogle Scholar
  44. Yamada, M., E. Hosoi, H. B. Tamate, J. Nagata, S. Tatsuzawa, H. Tado, and S. Ozawa. 2006. Distribution of two distinct lineages of sika deer (Cervus nippon) on Shikoku Island revealed by mitochondrial DNA analysis. Mammal Study 31:23–28CrossRefGoogle Scholar
  45. Yamada, M., E. Hosoi, J. Nagata, H. B. Tamate and H. Tado. 2007. Phylogenetic relationship of the southern Japan lineages of the sika deer (Cervus nippon) in Shikoku and Kyushu islands, Japan. Mammal Study 32:121–127CrossRefGoogle Scholar
  46. Yamauchi, K., S. Mamasaki, K. Miyazaki, T. Kukusui, Y. Takeuchi, and Y. Mori. 2000. Sex determination based on fecal DNA analysis of the amelogenin gene in sika deer. Journal of Veterinary Medical Science 62:669–671PubMedCrossRefGoogle Scholar
  47. Yokohama, M., Y. Hoshi, H. Nishi, H. Sumiyoshi, and Y. Ishijima. 1994. Karyotype analysis of the Yeso sika (Cervus nippon yesoensis) and its related species. Journal of Agricultural Science 39:170–176Google Scholar
  48. Yuasa, T., J. Nagata, S. Hamasaki, H. Tsuruga, and K. Furubayashi. 2007. The impact of habitat fragmentation on genetic structure of the Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. Ecological Research 22:97–106CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Hidetoshi B. Tamate
    • 1
  1. 1.Department of Biology, Faculty of ScienceYamagata UniversityYamagataJapan

Personalised recommendations