Skip to main content

Electroporation of Nucleic Acids into Chick Endoderm Both In Vitro and In Ovo

  • Chapter
Book cover Electroporation and Sonoporation in Developmental Biology

During gastrulation, vertebrate embryos generate three different germ layers, the ectoderm, mesoderm and endoderm. The endoderm layer is situated in the most ventral part of the embryo and differentiates into various tissues including the gut, respiratory and endocrine epithelium. In amniotes, the endoderm spreads out in a sheet-like manner and forms the most ventral layer in the early embryo. Subsequently, the anterior-most endoderm folds ventrally and forms a sack-like structure, the foregut. As the foregut extends posteriorly, the endoderm at the most posterior portion of the embryo forms another sack-like structure, the hindgut, and this grows rostrally. Finally, the foregut and hindgut meet at the level of the small intestine and form a simple tube. After the formation of tube, the endoderm becomes the lining epithelium of the gut and differentiates into various organs according to their position along the anterior7#x2014;posterior and the dorsal-ventral axes. These include the esophagus, lung, stomach, duodenum, pancreas, liver, small intestine and large intestine. These organs show specific morphologies and express particular factors depending on their function (Wells and Melton, 2000).

It has been well established that the differentiation of the endoderm is controlled by the surrounding tissues, principally the mesodermal mesenchyme (Fukuda and Yasugi, 2005; Kim et al., 1997; Yasugi and Fukuda, 2000). Hence, endodermal differentiation is regarded as a model example of tissue interaction during devel opment. As an example of the types of processes that occur during endodermal differentiation, the presumptive dorsal pancreas precursor cells, which reside at the midline of somite level 4–7 in the endodermal layer of the stage 10 chick embryo (Matsushita, 1999), facilitate dorsal pancreatic morphogenesis. In addition, these cells maintain the expression of early pancreas genes via the activity of activin and bFGF secreted from the notochord at around embryonic stage 12 through the repression of Shh (Hebrok et al., 1998). At a later stage, the pre- pancreas endoderm is separated from the notochord by the dorsal aorta. It has also been reported that vascular endothelial growth factor (VEGF) secreted from the dorsal aorta is a key molecule that upregulates insulin expression within the pancreatic endoderm (Lammert et al., 2003). After pancreas bud formation, activin is secreted from the surrounding mesenchyme whereby it induces exocrine cells and prevents an endo crine cell fate arising from the pancreas endoderm (Kumar and Melton, 2003). To further understand the processes of endodermal differentiation, it will be necessary to elucidate the chronological order of the multi-step tissue interactions that take place between endoderm and the surrounding tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Campos-Ortega, J. A. (1993). Mechanisms of early neurogenesis in Drosophila melanogaster. J Neurobiol 24, 1305–27.

    Article  CAS  Google Scholar 

  • Das, R. M., Van Hateren, N. J., Howell, G. R., Farrell, E. R., Bangs, F. K., Porteous, V. C., Manning, E. M., McGrew, M. J., Ohyama, K., Sacco, M. A., et al. (2006). A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 294, 554–63.

    Article  CAS  Google Scholar 

  • Dessimoz, J., Opoka, R., Kordich, J. J., Grapin-Botton, A., Wells, J. M. (2006). FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 123, 42–55.

    Article  CAS  Google Scholar 

  • Fukuda, K., Saiga, H., Yasugi, S. (1995). Transcription of embryonic chick pepsinogen gene is affected by mesenchymal signals through its 5′-flanking region. Adv Exp Med Biol 362, 125–9.

    CAS  Google Scholar 

  • Fukuda, K., Yasugi, S. (2005). The molecular mechanisms of stomach development in vertebrates. Dev Growth Differ 47, 375–82.

    Article  CAS  Google Scholar 

  • Grapin-Botton, A., Majithia, A. R., Melton, D. A. (2001). Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15, 444–54.

    Article  CAS  Google Scholar 

  • Hamburger, V., Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. J Morphol 88, 49–92.

    Article  Google Scholar 

  • Harpavat, S., Cepko, C. L. (2006). RCAS-RNAi: a loss-of-function method for the developing chick retina. BMC Dev Biol 6, 2.

    Article  Google Scholar 

  • Hebrok, M., Kim, S. K., Melton, D. A. (1998). Notochord repression of endodermal Sonic zhedgehog permits pancreas development. Genes Dev 12, 1705–13.

    Article  CAS  Google Scholar 

  • Kim, S. K., Hebrok, M., Melton, D. A. (1997). Notochord to endoderm signaling is required for pancreas development. Development 124, 4243–52.

    CAS  Google Scholar 

  • Kimura, W., Yasugi, S., Stern, C. D., Fukuda, K. (2006). Fate and plasticity of the endoderm in the early chick embryo. Dev Biol 289, 283–95.

    Article  CAS  Google Scholar 

  • Kohyama, J., Tokunaga, A., Fujita, Y., Miyoshi, H., Nagai, T., Miyawaki, A., Nakao, K., Matsuzaki, Y., Okano, H. (2005). Visualization of spatiotemporal activation of Notch signaling: live monitoring and significance in neural development. Dev Biol 286, 311–25.

    Article  CAS  Google Scholar 

  • Kopan, R. (2002). Notch: a membrane-bound transcription factor. J Cell Sci 115, 1095–7.

    CAS  Google Scholar 

  • Kumar, M., Melton, D. (2003). Pancreas specification: a budding question. Curr Opin Genet Dev 13, 401–7.

    Article  CAS  Google Scholar 

  • Lammert, E., Cleaver, O., Melton, D. (2003). Role of endothelial cells in early pancreas and liver development. Mech Dev 120, 59–64.

    Article  CAS  Google Scholar 

  • Matsuda, Y., Wakamatsu, Y., Kohyama, J., Okano, H., Fukuda, K., Yasugi, S. (2005). Notch signaling functions as a binary switch for the determination of glandular and luminal fates of endodermal epithelium during chicken stomach development. Development 132, 2783–93.

    Article  CAS  Google Scholar 

  • Matsushita, S. (1999). Fate mapping study of the endoderm in the posterior part of the 1.5-day-old chick embryo. Dev Growth Differ 41, 313–9.

    Article  CAS  Google Scholar 

  • Matsushita, S., Ishii, Y., Scotting, P. J., Kuroiwa, A., Yasugi, S. (2002). Pre-gut endoderm of chick embryos is regionalized by 15 days of development. Dev Dyn 223, 33–47.

    Article  Google Scholar 

  • McLarren, K. W., Litsiou, A., Streit, A. (2003). DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev Biol 259, 34–47.

    Article  CAS  Google Scholar 

  • Nakamura, H., Katahira, T., Sato, T., Watanabe, Y., Funahashi, J. (2004). Gain- and loss-of-function in chick embryos by electroporation. Mech Dev 121, 1137–43.

    Article  CAS  Google Scholar 

  • Niwa, H., Yamamura, K., Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–9.

    Article  CAS  Google Scholar 

  • Pannett, C. A., Compton, A. (1924). The cultivation of tissues in saline embryonic juice. Lancet 206, 381–84.

    Article  Google Scholar 

  • Pekarik, V., Bourikas, D., Miglino, N., Joset, P., Preiswerk, S., Stoeckli, E. T. (2003). Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotechnol 21, 93–6.

    Article  CAS  Google Scholar 

  • Rao, M., Baraban, J. H., Rajaii, F., Sockanathan, S. (2004). In vivo comparative study of RNAi methodologies by in ovo electroporation in the chick embryo. Dev Dyn 231, 592–600.

    Article  CAS  Google Scholar 

  • Sakamoto, N., Fukuda, K., Watanuki, K., Sakai, D., Komano, T., Scotting, P. J., Yasugi, S. (2000). Role for cGATA-5 in transcriptional regulation of the embryonic chicken pepsinogen gene by epithelial-mesenchymal interactions in the developing chicken stomach. Dev Biol 223, 103–13.

    Article  CAS  Google Scholar 

  • Stern, C. D., Ireland, G. W. (1981). An integrated experimental study of endoderm formation in avian embryos. Anat Embryol 163, 245–63.

    Article  CAS  Google Scholar 

  • Takiguchi, K., Yasugi, S., Mizuno, T. (1988). Pepsinogen induction in chick stomach epithelia by reaggregated priventricular mesenchymal cells in vitro. Dev Growth Differ 30, 241–50.

    Article  CAS  Google Scholar 

  • Wakamatsu, Y., Maynard, T. M., Jones, S. U., Weston, J. A. (1999). NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81.

    Article  CAS  Google Scholar 

  • Watanuki, K., Yasugi, S. (2003). Analysis of transcription regulatory regions of embryonic chicken pepsinogen (ECPg) gene. Dev Dyn 228, 51–8.

    Article  CAS  Google Scholar 

  • Wells, J. M., Melton, D. A. (2000). Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127, 1563–72.

    CAS  Google Scholar 

  • Wong, G. G., Witek, J. S., Temple, P. A., Wilkens, K. M., Leary, A. C., Luxenberg, D. P., Jones, S. S., Brown, E. L., Kay, R. M., Orr, E. C., et al. (1985). Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228, 810–5.

    Article  CAS  Google Scholar 

  • Yasugi, S. (2000). Epithelial cell differentiation during stomach development. Hum Cell 13, 177–84.

    CAS  Google Scholar 

  • Yasugi, S., Fukuda, K. (2000). The mesenchymal factors regulating epithelial morphogenesis and differentiation of the chicken stomach. Zool Sci 17, 1–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiko Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Fukuda, K. (2009). Electroporation of Nucleic Acids into Chick Endoderm Both In Vitro and In Ovo. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_8

Download citation

Publish with us

Policies and ethics