Enhancer Analysis

Strategies for Locus-Wide Identification and Systematic Analysis of Enhancers Using Chicken Embryo Electroporation
  • Masanori Uchikawa
  • Tatsuya Takemoto

During embryonic development, genes are expressed under a strict spatial and temporal order in cells and tissues. This regulation is governed by regulatory regions in the genome, usually identified as enhancers (Kondoh, 2008). The identification and mapping of a set of enhancers allow clarification of essential regulatory elements involved in the enhancer action and their interacting protein factors. Enhancer analysis also determines upstream signaling cascades that regulate interacting protein factors. If the regulatory regions do not function properly, spatio-temporal order of the gene expression will be disrupted, and this may cause abnormal development and dis eases (Kleinjan & van Heyningen, 2005; Sabherwal et al., 2007). Thus, identifica tion of the regulatory regions provides an important entry point to clarify regulatory mechanisms underlying embryonic development.

In the investigation of regulatory regions associated with a gene, various animal systems and tissue-cultured cells are widely employed, each having unique advan tages and drawbacks. We find that electroporation of chicken embryos is most advantageous for systematic survey of development-associated regulatory regions (Uchikawa et al., 2003, 2004; Uchikawa, 2008). The chicken embryo has advan tages in developmental studies (Stern, 2004), for its amenability to live observation and tissue manipulation, and availability of simple culture system (New's culture), and application of in ovo electroporation (Muramatsu et al., 1996; Funahashi et al., 1999) certainly enhances its merit.


Chicken Embryo Sox2 Expression Enhancer Activity Reporter Vector Multiple Cloning Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., Haussler, D. (2004). Ultraconserved elements in the human genome. Science 304, 1321–1325.CrossRefGoogle Scholar
  2. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99, 7877–7882.CrossRefGoogle Scholar
  3. Funahashi, J., Okafuji, T., Ohuchi, H., Noji, S., Tanaka, H., Nakamura, H. (1999). Role of Pax-5 in the regulation of a mID-hindbrain organizer's activity. Dev Growth Differ 41, 59–72.CrossRefGoogle Scholar
  4. Goto, K., Okada, T. S., Kondoh, H. (1990). Functional cooperation of lens-specific and nonspe cific elements in the delta 1-crystallin enhancer. Mol Cell Biol 10, 958–964.Google Scholar
  5. Hardison, R. C. (2000). Conserved noncoding sequences are reliable guIDes to regulatory elements. Trends Genet 16, 369–372.CrossRefGoogle Scholar
  6. Inoue, M., Kamachi, Y., Matsunami, H., Imada, K., Uchikawa, M., Kondoh, H. (2007). PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells 12, 1049–1061.CrossRefGoogle Scholar
  7. Izumi, K., Aramaki, M., Kimura, T., Naito, Y., Udaka, T., Uchikawa, M., Kondoh, H., Suzuki, H., Cho, G., Okada, Y., Takahashi, T., Golden, J. A., Kosaki, K. (2007). IDentification of a prosen-cephalic-specific enhancer of SALL1: comparative genomic approach using the chick embryo. Pediatr Res 61, 660–665.Google Scholar
  8. Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R., Kondoh, H. (1998). Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521–2532.Google Scholar
  9. Kleinjan, D. A., van Heyningen, V. (2005). Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76, 8–32.CrossRefGoogle Scholar
  10. Kondoh, H. (2008). Shedding light on developmental gene regulation through the lens. Dev Growth Differ 50 Suppl 1, S57–69.Google Scholar
  11. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C. C., Kain, S. R. (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273, 34970–34975.CrossRefGoogle Scholar
  12. Loots, G. G., Ovcharenko, I. (2005). anthology of comparative genomic tools. Nucleic AcIDs Res 33, W56–W64.CrossRefGoogle Scholar
  13. Matsumata, M., Uchikawa, M., Kamachi, Y., Kondoh, H. (2005). Multiple N-cadherin enhancers IDentified by systematic functional screening indicate its Group B1 SOX-dependent regulation in neural and placodal development. Dev Biol 286, 601–617.CrossRefGoogle Scholar
  14. Mayor, C., Brudno, M., Schwartz, J. R., Poliakov, A., Rubin, E. M., Frazer, K. A., Pachter, L. S., Dubchak, I. (2000). VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046–1047.CrossRefGoogle Scholar
  15. Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., Sasai, Y. (1998). Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induc tion. Development 125, 579–587.Google Scholar
  16. Muramatsu, T., Mizutani, Y., Okumura, J. (1996). Live detection of firefly luciferase gene expres sion by bioluminescence in incubating chicken embryos. Anim Sci Technol Jpn 67, 906–909.Google Scholar
  17. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20, 87–90.CrossRefGoogle Scholar
  18. Okuda, Y., Yoda, H., Uchikawa, M., Furutani-Seiki, M., Takeda, H., Kondoh, H., Kamachi,Y. (2006). Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Dev Dyn 235, 811–825.CrossRefGoogle Scholar
  19. Sabherwal, N., Bangs, F., Roth, R., Weiss, B., Jantz, K., Tiecke, E., Hinkel, G. K., Spaich, C., Hauffa, B. P., van der Kamp, H., Kapeller, J., Tickle, C., Rappold, G. (2007). Long-range con served non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. Hum Mol Genet 16, 210–222.CrossRefGoogle Scholar
  20. Schlosser, G., Ahrens, K. (2004). Molecular anatomy of placode development in Xenopus laevis. Dev Biol 271, 439–466.CrossRefGoogle Scholar
  21. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567–1572.CrossRefGoogle Scholar
  22. Stern, C. D. (2004). The chick embryo-past, present and future as a model system in developmen tal biology. Mech Dev 121, 1011–1013.CrossRefGoogle Scholar
  23. Takemoto, T., Uchikawa, M., Kamachi, Y., Kondoh, H. (2006). Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development 133, 297–306.CrossRefGoogle Scholar
  24. Tomioka, M., Nishimoto, M., Miyagi, S., Katayanagi, T., Fukui, N., Niwa, H., Muramatsu, M., Okuda, A. (2002). IDentification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic AcIDs Res 30, 3202–3213.CrossRefGoogle Scholar
  25. Uchikawa, M. (2008). Enhancer analysis by chicken embryo electroporation with aID of genome comparison. Dev Growth Differ 50, 467–474.CrossRefGoogle Scholar
  26. Uchikawa, M., IshIDa, Y., Takemoto, T., Kamachi, Y., Kondoh, H. (2003). Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4, 509–519.CrossRefGoogle Scholar
  27. Uchikawa, M., Takemoto, T., Kamachi, Y., Kondoh, H. (2004). Efficient IDentification of regula tory sequences in the chicken genome by a powerful combination of embryo electroporation and genome comparison. Mech Dev 121, 1145–1158.CrossRefGoogle Scholar
  28. Wood, H. B., Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86, 197–201.CrossRefGoogle Scholar
  29. Woolfe, A., Goodson, M., Goode, D. K., Snell, P., McEwen, G. K., Vavouri, T., Smith, S. F., North, P., Callaway, H., Kelly, K., Walter, K., Abnizova, I., Gilks, W., Edwards, Y. J., Cooke, J. E., Elgar, G. (2005). Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3, e7.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan

Personalised recommendations