Advertisement

Electrotransfer of Plasmid Vector DNA into Muscle

  • Satsuki Miyazaki
  • Jun-ichi Miyazaki

Wolff et al. (1990) first reported that plasmid DNA injected into skeletal muscle is taken up by muscle cells and the genes in the plasmid are expressed for more than two months thereafter, although the transfected DNA does not usually undergo chromosomal integration (Wolff et al., 1991, 1992). However, the relatively low expression levels attained by this method have hampered its applications for uses other than as a DNA vaccine (Davis et al., 1995). There are a number of reports analyzing the conditions that affect the efficiency of gene transfer by intramuscular DNA injection and assessing the fine structures of expression plasmid vectors that may affect expression levels (Davis et al., 1993; Liang et al., 1996; Norman et al., 1997). Furthermore, various attempts were done to improve the efficiency of gene transfer by intramus cular DNA injection. Consequently, regenerating muscle was shown to produce 80-fold or more protein than did normal muscle, following injection of an expression plas-mid. Muscle regeneration was induced by treatment with cardiotoxin or bupivacaine (Wells, 1993; Vitadello et al., 1994). We previously demonstrated that by combining a strong promoter and bupivacaine pretreatment intramuscular injection of an IL-5 expression plasmid results in IL-5 production in muscle at a level sufficient to induce marked proliferation of eosinophils in the bone marrow and eosinophil infiltration of various organs (Tokui et al., 1997). It was also reported that a single intramuscular injection of an erythropoietin expression plasmid produced physiologically significant elevations in serum erythropoietin levels and increased hematocrits in adult mice (Tripathy et al., 1996). Hematocrits in these animals remained elevated at >60% for at least 90 days after a single injection. However, improvements to this method have not been sufficient to extend its applications including clinical use.

Electroporation has long been used for DNA transfection of cells in vitro and it implies a physical process which exposes cells to a brief, high voltage that induces temporary poration to the cell membrane, allowing the influx of large molecules such as plasmid DNA. The entry of plasmid directly into cytoplasm may bypass the endosome7#x2014;lysosome pathway, reducing the degree of DNA degradation. Its initial application in vivo was to transfer DNA into liver cells (Heller et al., 1996) and chick embryos (Muramatsu et al., 1997). We tried in vivo electroporation in skeletal muscle of mice by low voltage rectangular pulses, which had been successfully applied in chick embryos in ovo (Muramatsu et al., 1997; Funahashi et al., 1999). By applying electroporation, naked plasmid DNA can be delivered several hundred-fold more efficiently to muscle cells in vivo (Aihara & Miyazaki, 1998; Mir et al., 1999; Rizzuto et al., 1999). The resulting expression levels are considered sufficient to warrant further investigation of this method for human gene therapy for various diseases (Maruyama et al., 2000).

Keywords

Gene Transfer Expression Plasmid Electric Pulse Tibialis Anterior Muscle Direct Gene Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aihara, H., Miyazaki, J. (1998). Gene transfer into muscle by electroporation in vivo. Nature Biotechnol 16, 867–870.CrossRefGoogle Scholar
  2. Blair-Parks, K., Weston, B. C., Dean, D. A. (2002). High-level gene transfer to the cornea using electroporation. J Gene Med 4, 92–100.CrossRefGoogle Scholar
  3. Couffinhal, T., Kearney, M., Sullivan, A., Silver, M., Tsurumi, Y., Isner, J. M. (1997). Histo-chemical staining following LacZ gene transfer underestimates transfection efficiency. Hum Gene Ther 8, 929–934.CrossRefGoogle Scholar
  4. Davis, H. L., Whalen, R. G., Demeneix, B. A. (1993). Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 4, 151–159.CrossRefGoogle Scholar
  5. Davis, H. L., Michel, M. -L., Whalen, R. G. (1995). Use of plasmid DNA for direct gene transfer and immunization. Ann N Y Acad Sci 772, 21–29.CrossRefGoogle Scholar
  6. Dezawa, M., Takano, M., Negishi, H., Mo, X., Oshitari, T., Sawada, H. (2002). Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 33, 1–6.CrossRefGoogle Scholar
  7. Funahashi, J., Okafuji, T., Ohuchi, H., Noji, S., Tanaka, H., Nakamura, H. (1999). Role of Pax-5 in the regulation of a mid-hindbrain organizer's activity. Dev Growth Differ 41, 59–72.CrossRefGoogle Scholar
  8. Harimoto, K., Sugimura, K., Lee, C.R. (1998). In vivo gene transfer methods in the bladder without viral vectors. Br J Urol 81, 870–874.Google Scholar
  9. Harrison, R. L., Byrne, B. J., Tung, L. (1998). Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 435, 1–5.CrossRefGoogle Scholar
  10. Heller, R., Jaroszeski, M., Atkin, A., Moradpour, D., Gilbert, R., Wands, J., Nicolau, C. (1996). In vivo electroinjection and expression in rat liver. FEBS Lett 389, 225–228.CrossRefGoogle Scholar
  11. Horiki, M., Yamato, E., Ikegami, H., Ogihara, T., Miyazaki, J. (2004). Needleless in vivo gene transfer into muscles by jet injection in combination with electroporation. J Gene Med 6, 1134–1138.CrossRefGoogle Scholar
  12. Inoue, T., Krumlauf, R. (2001). An impulse to the brain — using in vivo electroporation. Nature Neurosci 4 (Suppl), 1156–1158.CrossRefGoogle Scholar
  13. Jayankura, M., Boggione, C., Frisén., C., Boyer, O., Fouret, P., Saillant, G., Klatzmann, D. (2003). In situ gene transfer into animal tendons by injection of naked DNA and electrotransfer. J Gene Med 5, 618–624.CrossRefGoogle Scholar
  14. Konig, S., Burkman, J., Fitzgerald, J., Mitchell, M., Su, L., Stedman, H. (2002). Modular organization of phylogenetically conserved domains controlling developmental regulation of the human skeletal myosin heavy chain gene family. J Biol Chem 277, 27593–27605.CrossRefGoogle Scholar
  15. Lamartina, S., Roscilli, G., Rinaudo, C. D., Sporeno, E., Silvi, L., Hillen, W., Bujard, H., Cortese, R., Ciliberto, G., Toniatti, C. (2002). Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum Gene Ther 13, 199–210.CrossRefGoogle Scholar
  16. Liang, X., Hartikka, J., Sukhu, L., Manthorpe, M., Hobart, P. (1996). Novel, high expressing and antibiotic-controlled plasmid vectors designed for use in gene therapy. Gene Ther 3, 350–356.Google Scholar
  17. Lin, C. R., Tai, M. H., Cheng, J. T., Chou, A. K., Wang J. J, Tan, P. H., Marsala, M., Yang, L. C. (2002). Electroporation for direct spinal gene transfer in rats. Neurosci Lett 317, 1–4.CrossRefGoogle Scholar
  18. Maruyama, H., Sugawa, M., Moriguchi, Y., Imazeki, I., Ishikawa, Y., Ataka, K., Hasegawa, S., Ito, Y., Higuchi, N., Kazama, J. J., Gejyo, F., Miyazaki, J. (2000). Continuous erythropoietin delivery by muscle-targeted gene transfer using in vivo electroporation. Hum Gene Ther 11, 429–437.CrossRefGoogle Scholar
  19. Maruyama, H., Ataka, K., Higuchi, N., Sakamoto, F., Gejyo, F., Miyazaki, J. (2001). Skin-targeted gene transfer using in vivo electroporation. Gene Ther 8, 1808–1812.CrossRefGoogle Scholar
  20. Matsumoto, T., Komori, K., Shoji, T., Kuma, S., Kume, M., Yamaoka, T., Mori, E., Furuyama, T., Yonemitsu, Y., Sugimachi, K. (2001). Successful and optimized in vivo gene transfer to rabbit carotid artery mediated by electronic pulse. Gene Ther 8, 1174–1179.CrossRefGoogle Scholar
  21. Mir, L. M., Bureau, M. F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J. M., Delaere, P., Branellec, D., Schwartz, B., Scherman, D. (1999). High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96, 4262–4267.CrossRefGoogle Scholar
  22. Muramatsu, T., Mizutani, Y., Ohmori, Y., Okumura, J. (1997). Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230, 376–380.CrossRefGoogle Scholar
  23. Niwa, H., Yamamura, K., Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.CrossRefGoogle Scholar
  24. Norman, J. A., Hobart, P., Manthorpe, M., Felgner, P., Wheeler, C. (1997). Development of improved vectors for DNA-based immunization and other gene therapy applications. Vaccine 15, 801–803.CrossRefGoogle Scholar
  25. Rizzuto, G., Cappelletti, M., Maione, D., Savino, R., Lazzaro, D., Costa, P., Mathiesen, I., Cortese, R., Ciliberto, G., Laufer, R., La Monica, N., Fattori, E. (1999). Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 96, 6417–6422.CrossRefGoogle Scholar
  26. Takatsu, K. (1992). Interleukin-5. Curr Opin Immunol 4, 299–306.CrossRefGoogle Scholar
  27. Tokui, M., Takei, I., Tashiro, F., Shimada, A., Kasuga, A., Ishii, M., Ishii, T., Takatsu, K., Saruta, T., Miyazaki, J. (1997). Intramuscular injection of expression plasmid DNA is an effective means of long-term systemic delivery of interleukin-5. Biochem Biophys Res Commun 233, 527–531.CrossRefGoogle Scholar
  28. Tripathy, S. K., Svensson, E. C., Black, H. B., Goldwasser, E., Margalith, M., Hobart, P. M., Leiden, J. M. (1996). Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc Natl Acad Sci USA 93, 10876–10880.CrossRefGoogle Scholar
  29. Vicat, J. M., Boisseau, S., Jourdes, P., Laine, M., Wion, D., Bouali-Benazzouz, R., Benabid, A. L., Berger, F. (2000). Muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression. Hum Gene Ther 11, 909–916.CrossRefGoogle Scholar
  30. Vitadello, M., Schiaffino, M. V., Picard, A., Scarpa, M., Schiaffino, S. (1994). Gene transfer in regenerating muscle. Hum Gene Ther 5, 11–18.CrossRefGoogle Scholar
  31. Wells, D. J. (1993). Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett 332, 179–182.CrossRefGoogle Scholar
  32. Widera, G., Austin, M., Rabussay, D., Goldbeck, C., Barnett, S. W., Chen, M., Leung, L., Otten, G. R., Thudium, K., Selby, M. J., Ulmer, J. B. (2000). Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164, 4635–4640.Google Scholar
  33. Wolf, H., Rols, M. P., Boldt, E., Neumann, E., Teissie, J. (1994). Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66, 524–531.CrossRefGoogle Scholar
  34. Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.CrossRefGoogle Scholar
  35. Wolff, J. A., Williams, P., Acsadi, G., Jiao, S., Jani, A., Chong, W. (1991). Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques 11, 474–485.Google Scholar
  36. Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P., Jani, A. (1992). Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1, 363–369.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Division of Stem Cell Regulation ResearchOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations